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D. KATZ

1. Nagata rings

In this part of the course we deal with the following question: Given a Noetherian domain R with quotient
fieldK, when is the integral closure of R in a finite extension ofK a finite R-module? The rings from algebraic
geometry have this property. Our immediate goal is to see to what extent this property holds in a purely
algebraic setting.

Until further notice, or unless indicated otherwise, R will denote a Noetherian integral domain with quotient
field K. We will consistently use L to denote a finite field extension of K and S to denote the integral closure
of R in L. For an integral domain T , we will write T ′ for the integral closure of T (in its quotient field).

Definition. Maintaining the notation above:

(i) R is said to satisfy N1 if R′ is a finite R-module.
(ii) R is said to satisfy N2 if S′ is a finite S-module for all finite extensions L of K.
(iii) R is said to be a Nagata ring if R/P satisfies N2, for all prime ideals P ⊆ R.

Comments. 1. The main goal of this section is to prove that if R is a Nagata ring, then any finitely
generated R-algebra T is a Nagata ring.

2. Though we are assuming throughout that R is an integral domain, the definition of Nagata ring clearly
applies to any Noetherian ring. The theorem we seek for arbitrary rings reduces trivially to integral domains,
so we do not lose any generality by assuming R and T are integral domains.

3. If S is a finite extension of R, then R satisfies N2 if and only if S satisfies N2. The forward direction is
clear. If S satisfies N2 and A is the integral closure of R in a finite extension E of K, then A is contained
in the integral closure B of S in the field obtained by adjoining E to L. Since B is finite over S, it is finite
over R, and thus A is finite over R.

4. If R satisfies N2 or is a Nagata ring, then RS is N2 or a Nagata ring, for any multiplicatively closed set
S ⊆ R.

5. If S is a finite extension of R, then R is a Nagata ring if and only if R is a Nagata ring. This follows
easily from 3 above and the lying over property for integral extensions.

6. If R is a complete local domain, then R is a Nagata ring. Why: Each factor R/P is a complete local
domain and complete local domains satisfy N2 (coming soon).

We will require a number of preliminary results before getting to the main result on Nagata rings. For
this, we need a good understanding of integral closure. Our first result is a variation on Serre’s criteria for
a ring to be integrally closed.

Proposition A. Let 0 ̸= x ∈ R. Then xR is an integrally closed ideal if and only if RP is a DVR, for all
P ∈ Ass(R/xR).

Proof. Suppose that for each P ∈ Ass(R/xR), RP is a DVR, and fix one such P . If y ∈ xR, then
y ∈ xRP = xRP , since RP is a DVR. Since this holds for all P , y ∈ xR.

Now suppose xR is integrally closed and P ∈ Ass(R/xR). We may assume R is local at P . Write
P = (xR : a). Then P · a

x is an ideal of R. If P · a
x ⊆ P , then by the determinant trick, a

x is integral over R.

Thus, a ∈ xR = xR, a contradiction. Therefore P · a
x = R.

Take p0 ∈ P such that p0 · a
x = 1. Now take any p ∈ P . Note that p · a

x ∈ R. Thus, p = (p · a
x ) · p0, which

shows P = p0R. Therefore, R is a DVR. □
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Corollary B. For R as above, R is integrally closed if and only if for every prime P ⊆ R associated to a
principal ideal, RP is a DVR.

Proof. Since an element a
x ∈ K is integral over R if and only if a ∈ xR, R is integrally closed if and only if

each principal ideal xR is integrally closed. Thus, the corollary follows immediately from Theorem A. □
Corollary C. Suppose there exists 0 ̸= x ∈ R such that Rx is integrally closed. Then there exists an ideal
J ⊆ R such that for all prime ideals Q ⊆ R, RQ is integrally closed if and only if J ̸⊆ Q.

Proof. If RP is a DVR for all P ∈ Ass(R/xR), then the previous corollary implies that R is integrally closed
and we just take J = R.

Otherwise, let P1, . . . , Pr be the prime ideals in Ass(R/xR) such that RP is NOT a DVR. Set J := P1∩· · ·∩Pr.
Suppose Q ⊆ R is a prime ideal. If J ⊆ Q, then Pi ⊆ Q, some i. Since RQ localized at PiRQ is just RPi

,
xRQ is not integrally closed, and thus RQ is not integrally closed.

Suppose RQ is not integrally closed. Then we must have x ∈ Q and xRQ is not integrally closed. By
standard localization arguments, Pi ⊆ Q, for some i. Thus, J ⊆ Q. □

Suppose R is locally analytically unramified and T is a finitely generated R-algebra contained in K. Then
T ′ is locally finite over T . In general, if T is a Noetherian domain and T ′

m is finite over Tm for all maximal
ideals m, then it need not be the case that T ′ is finite over T . However, the following important result gives
a case when this does hold.

Theorem D. Let T be a Noetherian domain satisfying the properties:

(i) Tb is integrally closed for some 0 ̸= b ∈ T .
(2) T ′

m is finite over Tm for all maximal ideals m containing b.

Then T ′ is finite over T .

Remark. Note that conditions (i) and (ii) above together imply that T ′
m is finite over Tm for all maximal

ideals m.

Proof. For each maximal ideal m containing b, let T ⊆ T (m) ⊆ T ′ be a ring which is a finite T -module
satisfying T (m)m = T ′

m. Fix m. Since Tb = T ′
b, T (m)b = T ′

b is integrally closed. By the previous corollary,
there exists J(m) ⊆ T (m) such that for all primes Q ⊆ T (m), TQ is integrally closed if and only if J(m) ̸⊆ Q.

Set I(m) = J(m) ∩ T . Note that since T (m)m is integrally closed, I(m) ̸⊆ m, since J(m)m = T (m)m. Let
J ⊆ T be the ideal such that TQ is integrally closed if and only if J ̸⊆ Q. Thus J ̸⊆ m for all maximal ideals
m not containing b.

If we take the sum of all ideals I(m) together with J , then we get an ideal not contained in any maximal
ideal of T . Thus, this sum equals T . Therefore, a finite set of ideals from this collection sum to R. Call
these ideals J, I(m1), . . . , I(ms). Note that it does no harm to include J , even if it is not required.

Set T̃ := T [T (m1), · · · , T (ms)], a finite T -module with T ⊆ T̃ ⊆ T ′. We claim T̃ = T ′. It suffices to show

that T̃Q = T ′
Q for all maximal ideals Q ⊆ T̃ . Fix a maximal ideal Q.

Set m := Q∩T . Then m does not contain J+I(m1)+ · · ·+I(ms). If J ̸⊆ m, then Tm = T ′
m. Hence T̃m = T ′

m,

and therefore T̃Q = T ′
Q.

If I(mi) ̸⊆ m, set Q0 := Q ∩ T (mi). Then J(mi) ̸⊆ Q0. Thus, T (mi)Q0
= T ′

Q0
. Therefore T̃Q0

= T ′
Q0

. Since

T̃Q and T ′
Q are further localizations of T̃Q0 = T ′

Q0
, it follows that T̃Q = T ′

Q, as required. □
Corollary E. Suppose R is integrally closed and locally analytically unramified. Let R ⊆ T ⊆ K be a finitely
generated R-algebra. Then T ′ is a finite T -module.

Proof. We can write T = R[a1

b , . . . ,
an

b ], for ai, b ∈ R. Then, Tb = Rb is integrally closed. On the other

hand, let m ⊆ T be a maximal ideal and set Q := m∩R. Then T ′
Q is finite over TQ, since RQ is analytically

unramified. Thus, T ′
m is finite over Tm, so the result follows from Theorem D. □

Our next result shows that there is no difference between the conditions N1 and N2 for rings having
characteristic zero.
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Theorem F. Suppose that R has characteristic zero and satisfies condition N1. Then R satisfies N2. In
particular, if R is integrally closed, and has characteristic zero, then R satisfies N2.

Proof. Let L be a finite extension of K and S the integral closure of R in L. If we show that S is a finite
R′-module, then since R satisfies N1, S is a finite R-module. Thus, it suffices to prove the second statement.

We now assume R is integrally closed. Since L is a separable extension of K, we may enlarge L to a
Galois extension L′ of K. If the integral closure of R in L′ is finite over R, then S is finite over R. Thus,
without loss of generality, we assume L is Galois over K.

Since L is separable over K, we may write L = K(α), for some α ∈ L. In fact, we may take a ∈ S, such that
L = K(a), by clearing denominators in an equation of algebraic dependence for α over K. Recall: Since R
is integrally closed, the minimal polynomial f(x) for a over K has coefficients in R. Let a = a1, a2, . . . an be
the roots of f(x).

Thus, n is the degree of f(x) and every element in L can be written (uniquley) in the form:

k01 + k1a+ · · ·+ kn−1a
n−1,

for kj ∈ K. Let σ1, . . . , σn denote the elements of the Galois group of L overK. Set d :=
∏

i<j(σi(a)−σj(a))
2,

the discriminant of f(x). The proof is complete if we show d · S ⊆ R[a].

Let s ∈ S and write

s = k01 + k1a+ · · ·+ kn−1a
n−1, (∗)

with kj ∈ K. If we show that d · kj ∈ R, for all j, then d · s ∈ R[a]. Applying each σi to (*), we get an n×n
system of equations of the form

σi(s) = k01 + k1σi(a) + · · ·+ kn−1σi(a)
n−1. (∗∗)

This yields a matrix equation A ·

 k0
...

kn−1

 =

σ1(s)
...

σn(s)

, where A = (σi(a)
j).

Let Ã denote the adjugate of A, so that Ã ·A = det(A) · InA. We note: (i) A is a Van der Mond matrix,
and thus det(A)2 = d.

(ii) Each σi(s) and σi(a)
j is integral over R, and thus belongs to S (since L is Galois over K).

(iii) Multiplying (**) by Ã shows the entries of Ã ·

σ1(s)
...

σn(s)

 are integral over R.

Thus each det(A) · ki is integral over R. Therefore d · ki is integral over R. On the other hand, for each
i, σj(dki) = dki, for all j. Thus dki ∈ K, for all i. Since each dki is integral over R, each dki ∈ R, as
required. □
Important Remark. The crucial point in the proof above is the fact that L is separable over K. Thus the
proof of Theorem F shows the following: If R is an integrally closed Noetherian domain with quotient field
K, then the integral closure of R in a finite separable extension of K is a finite R-module.

The example below due to Nagata constructs a one-dimensional local domain S with infinite integral
closure and also a one-dimensional DVR R that does not satisfy N2. Since an excellent local domain must
satisfy N2, R is not excellent.

Example G. We start with a field K of characteristic p > 0 such that [K : Kp] = ∞. For example, one
can take K to be Zp(U1, U2, . . .), where {Ui} are algebraically independent over Zp. We set T := K[[x]] and
R := Kp[[x]][K], where x is analytically independent over K. We follow the steps below.

Step 1. For f =
∑∞

i=0 αix
i ∈ T , f ∈ R if and only if [Kp({αi}) : Kp] < ∞.

Proof: Suppose f ∈ R. Then we can write f = g1k1 + · · · + grkr, for gj ∈ Kp[[x]] and kj ∈ K. If we
write gj :=

∑∞
i=0 βijx

i, then for all i ≥ 0, we have αi = βi1k1 + · · · + βirkr. It follows that Kp({αi}) ⊆
Kp · k1 + · · ·+Kp · kr, and thus [Kp({αi}) : Kp] < ∞.
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Conversely, suppose [Kp({αi}) : Kp] < ∞. Let k1, . . . , kr be a basis for Kp({αi}) over Kp. Then for
each i ≥ 0, we have an equation αi = βi1k1 + · · · + βirkr, with each βij ∈ Kp. It follows that if we set
gj :=

∑∞
i=0 βijx

i, then f = g1k1 + · · ·+ grkr, and hence f ∈ R.

Step 2. R is a discrete valuation ring.

Proof: It suffices to show that xR is the set of non-units of R (and hence xR is the unique maximal ideal of
R) and

⋂∞
i=1 x

nR = 0. The second statement follows since
⋂∞

i=11 x
nT = 0. For the first statement, suppose

f =
∑∞

i=0 αix
i ∈ R is a non-unit. We claim α0 = 0. Suppose not. Then f is a unit in T , and hence there

exists g =
∑∞

i=0 βix
i such that fg = 1. If we solve the resulting system of equations

α0β0 = 1

α1β0 + α0β1 = 0

...

for the βi, we see that Kp({βi}) ⊆ Kp({αi}), and thus [Kp({βi}) : Kp] < ∞, since f ∈ R. Thus, g ∈ R,

which is a contradiction, since f is a non-unit in R. Thus, α0 = 0. Therefore, we can write f = xf̃ . Since
the coefficients of f̃ are the same as the coefficients of f , only shifted by one degree, by Step 1, f̃ ∈ R. Thus,
f ∈ xR. Therefore, the non-units of R are contained in xR. Since every element of xR is clearly a non-unit
in R, it follows that xR is the set of non-units in R. Thus, R is a discrete valuation ring.

Step 3. T is the x-adic completion of R.

Proof: Every f in T in the limit (in the x-adic topology) of a sequence of polynomials {fn} ⊆ K[x]. Each
fn ∈ R. Thus, R is dense in T . Since T is complete in the x-adic topology, T is the completion of R.

Step 4. Take β0, β1, . . . ∈ K such that [Kp({βi}) : Kp] < ∞ and set a :=
∑∞

i=0 βix
i, so a ∈ T\R. Then

ap ∈ R and for an indeterminate Y over R , Y p − ap is irreducible over R.

Proof: In T , we have a = limn→∞ an, where an := β0 + · · · + βnx
n. Thus, limn→∞ apn = ap. Since

apn = βp
0 + · · ·+ βnx

np, it follows that ap =
∑∞

i=0 β
p
i x

ip ∈ R.
Now, ap is not a pth power in R, otherwise ap = rp, for some r ∈ R, and thus (a− r)p = 0, so a− r = 0,

which gives a ∈ R, a contradiction. Since R is integrally closed ap is not a pth power in the quotient field of
R, so Y p − ap is irreducible over R.

Step 5. Set S := R[a]. Then S ∼= R[Y ]/(Y p − ap) and S is a one dimensional local domain whose integral
closure S′ is not a finite S-module.

Proof: From the previous step we know that Y p − ap generates a height one prime in the UFD R[Y ]. Since
Y p − ap belongs to the kernel of the natural map from R[Y ] to R[a], it must generate the kernel. This gives
the first statement.

For the second statement, S is integral over R, so it is one-dimensional. Moreover, hp ∈ R, for all h ∈ S,
so S must local. To see this, suppose Q1, Q2 ⊆ S are two maximal ideals. Since R is local, Q1 ∩R = Q2 ∩R.
Take h ∈ Q1\Q2. Then hp ∈ Q1 ∩R = Q2 ∩R, so hp ∈ Q2. Thus, h ∈ Q2, a contradiction. Therefore S is a
one-dimensional local domain.

We claim Ŝ ∼= R̂[Y ]/(Y p−ap) = T [Y ]/(Y p−ap). Here the completions of R and S are taken with respect
to the x-adic topology, which in each case yields the completion with respect to the respective maximal
ideals. Suppose the claim holds. In T [Y ], Y p − ap = (Y − a)p, which shows that T [Y ]/(Y p − ap) and hence

Ŝ is reduced. Thus, S is not analytically unramified. By what we have already shown in class, this implies
that S′ is not a finite S-module.

For the claim, we tensor the exact sequence

0 → (Y p − ap)R[Y ]
i→ R[Y ] → S → 0

with R̂ to obtain the exact sequence

0 → (Y p − ap)R[Y ]⊗ R̂
î→ R̂[Y ] → Ŝ → 0,

where we use the easy-to-check fact that R[Y ]⊗ R̂ = R̂[Y ]. Since the image of the map î is (Y p − ap)R̂[Y ],
this yields the claim.
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Step 6. R does not satisfy N2. Hence R is a non-excellent discrete valuation ring.

Proof: Since a finite extension of a ring satisfying N2 must have a finite integral closure, the first statement
follows from the previous step. The second statement follows from the fact that an excellent local domain
must be a Nagata domain, and hence must satisfy N2. We will see this later in the semester.

Remark. The example above is a special case of Nagata’s example, in that Nagata takes more variables.
In other words, he sets T := K[[x1, . . . , xd]] and R := Kp[[x1, . . . , xd]][K], where x1, . . . , xd are analytically
independent variables over F . Nagata proves that R is a regular local ring with completion T . When d = 2
and d = 3, he uses R and T to also construct: (a) An example of a two-dimensional Noetherian domain A
and a non-Noetherian ring B such that A ⊆ B ⊆ A′ and (b) An example of a three-dimensional Noetherian
domain C such that C ′ is not Noetherian. These examples are relevant because on the one hand, every ring
between a one-dimensional Noetherian domain and its quotient field is Noetherian, while on the other hand,
the integral closure of any two-dimensional Noetherian domain is Noetherian.

The next important theorem shows that a Nagata local domain is analytically unramified.

Theorem H. Assume that (R,m, k) is a local Nagata ring. Then R is analytically unramified.

Proof. We proceed with the following steps.

Step 1. Reduction to the case that R is integrally closed.

Proof. We use the fact that if A is a semi-local ring with maximal ideals P1, . . . , Pc and J = P1 ∩ · · · ∩ Pc,
then the J-adic completion of A is the direct sum of the Pi-adic completions of A. To see this, note that for
each n,

A/Jn ∼= A/Pn
1 ⊕ · · · ⊕A/Pn

c .

Now use the fact that inverse limits commute with direct sums to conclude ÂJ = ÂP1 ⊕· · ·⊕ ÂPc . Note that
in this case, ÂJ is reduced if and only if each ÂPi is reduced.

We apply the foregoing to R′. Since R′ is finite over R, R has finitely many maximal ideals and R̂′ = R′⊗ R̂,

hence the inclusion R⊗ R̂ → R′ ⊗ R̂ shows that R̂ is contained in the completion of R′ with respect to mR′.

On the other hand,
√
mR′ =: J is the Jacobson radical of R′. Thus, the completions of R′ with respect to

mR′ and J are the same. The latter is the direct sum of the completions of R′ with respect to P1, . . . , Pc,

where the Pi are the maximal ideals of R′. If each R̂′Pi

is reduced, then R̂ is reduced, which is what we
want.

Since each R′
Pi

is also a Nagata ring and R̂′Pi

= R̂′
Pi

Pi

, it suffices to show each R′
Pi

is analytically unramified.
Thus, we may now assume that R is integrally closed.

Step 2. If 0 ̸= x ∈ R and P ∈ Ass(R̂/xR̂) satisfies R/(P ∩ R) is analytically unramified, then (R̂)P is a
DVR.

Proof. Set P0 := P ∩R and localize R at P0. We note that P0 ∈ Ass(R/xR). If not P0, contains a non-zero

divisor on R/xR, which remains a non-zero divisor on its completion R̂/xR̂, contrary to our assumption on

P . Thus, RP0 is a DVR (by Proposition A) and P0 = yR, for some y ∈ R. Since R̂ is (still) flat over R, y is

a non-zerodivisor in R̂. It follows that P ∈ Ass(R̂/yR̂) = Ass(R̂/P0R̂).

On the other hand, R̂/P0R̂ is reduced (by assumption). Thus

(R̂/P )P = (R̂/P0R̂)P = (R̂/yR̂)P .

Therefore, PP is principal, so R̂P is a DVR.

Step 3. We prove the theorem by induction on the dimension of R.

Proof. Suppose R has dimension one and take 0 ̸= x ∈ R. Since R′ is finite over R, there exists k ≥ 1 such
that xnR′ ∩ R ⊆ xn−kR, for all n ≥ k. Thus xnR ⊆ xn−kR, for all n ≥ k. Since xR is m-primary, R is
analytically unramified by Rees’s theorem.

If R has dimension greater than one, then by induction, R/Q is analytically unramified for all non-zero

prime ideals Q ⊆ R. Fix 0 ̸= x ∈ R, and take P ∈ Ass(R̂/xnR̂). By Steps 1 and 2, R̂P is a DVR. By
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Proposition A, xnR̂ is integrally closed, for all n ≥ 1. Since the nilradical of R̂ is contained in the integral

closure of every ideal, the nilradical of R̂ is contained in xnR̂ for all n. Thus the nilradical of R̂ is zero,
which completes the proof. □

We need one more component, of independent interest, before we can prove the main result of this section.
For this result, we will use the following fact about polynomial rings, whose proof we leave as an exercise.
Let A ⊆ B be commutative rings and f(x) ∈ B[x]. Then f(x) is integral over A[x] if and only if each
coefficient of f(x) is integral over A. It follows that if A is an integrally closed integral domain, the A[x] is
also integrally closed.

Theorem I. Suppose R satisfies N2. Then the polynomial ring R[x] also satisfies N2.

Proof. Let K denote the quotient field of R and suppose L is a finite extension of K(x), the quotient field
of R[x]. Let S denote the integral closure of R[x] in L. Clearly, R′[x] ⊆ S. If S is a finite R′[x]-module,
then since R′[x] is a finite R[x]-module (R′ is finite over R), S will be a finite R[x]-module. Thus, we may
replace R by R′ and assume that R is integrally closed. Then R[x] is also integrally closed.

If R has characteristic zero, the proof is complete, by Theorem F. Suppose R has characteristic p > 0, i.e.,
Zp ⊆ R. We claim there exists a finite extension K ′ of K, an exponent q = pe, for some e, and γ in the

algebraic closure of L such that L ⊆ K(x
1
q , γ) and γ is separable over K ′(x

1
q ).

Suppose the claim holds. Let R0 be the integral closure of R in K ′. Then R0[x] is the integral closure of

R[x] in K ′(x). Since R0 is finite over R, R0[x] is finite over R[x]. If the integral closure of R0[x] in K ′(x
1
q , γ)

is finite over R0[x], it is finite over R[x]. Thus, we may replace K ′ by K and R0 by R and assume K = K ′.

So, let S denote the integral closure of R[x] in K(x
1
q , γ). Let T denote the integral closure of R[x] in

K(x
1
q ). Since R[x

1
q ] is contained in K(x

1
q ), is integral over R[x], and is integrally closed (it’s a polynomial

ring over R), we have T = R[x
1
q ], which is a finite R[x]-module. On the other hand, by the Remark following

Theorem F, the integral closure of T in K(x
1
q , γ), which is S, is a finite T -module. Thus, S is a finite

R[x]-module, as required.

It remains to prove the claim. For this, we first make an observation. Let E be a field of characteristic p > 0
and suppose β is separable over E, with minimal polynomial f(y). If E0 ⊇ E is a field containing the qth roots

of the coefficients of f(y), then β
1
q is separable over E0. To see this, suppose f(y) = yn + e1y

n−1 + · · ·+ en,

with each ej ∈ E. If δ is a root of f(y), then δ
1
q is a root of fq(y) = yn + e

1
q

1 y
n−1 + · · ·+ e

1
q
n . Since f(y) has

distinct roots, fq(y) has distinct roots, and hence β
1
q is separable over E0.

To prove the claim, we can write K(x) ⊆ F ⊆ L, where F is separable over K(x) and L is purely
inseparable over F . There exists β ∈ F such that F = K(x, β). Moreover, there exist α1, . . . , αs ∈ L and
q = pe such that αq

i ∈ K(x, β), for all i, and L = K(x, β, α1, . . . , αs). Suppose

f(y) = yn +
cn(x)

dn(x)
yn−1 + · · ·+ cn(x)

dn(x)

is the minimal polynomial of β over K(x). For each 1 ≤ i ≤ s, we have an equation

αq
i =

a0,i(x)

b0,i(x)
· 1 + · · ·+ an−1,i(x)

bn−1,i(x)
· βn−1,

where the fractions in this equation belong to K(x). Let K ′ be the field obtained by adjoining the qth roots

of the coefficients of all ai,j(x), bi,j(x), ci(x), di(x) to K. Set γ = β
1
q . Then L ⊆ K ′(x

1
q , γ) and K ′ is a

finite extension of K. By the observation above, γ is separable over K ′(x
1
q ). The proof of Theorem I is now

complete. □
We are now ready to prove the main result of this section.

Theorem J. Suppose R is a Nagata ring and T is a finitely generated R-algebra. Then T is a Nagata ring.

Proof. By induction on the number of ring generators of T over R, we may assume that T = R[x], for
some x ∈ T . Let Q ⊆ T be a prime ideal. We must show that T/Q satisfies N2. Set q := Q ∩ R. Then
T/Q = R/q[x], where x denotes the image of x in T/Q. Since R/q is a Nagata ring, upon changing notation
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we are reduced to proving the following statement. If R is a Nagata ring and T is an integral domain
generated as a ring over R by a single element x, then T satisfies N2.

If x is algebraically independent over R, then we are done by the previous theorem.

Suppose x is algebraic over R. If x is integral over R, then T is a Nagata ring, by Comment 5 above.
Otherwise, there exists a ∈ R such that ax is integral over R. Thus the ring A := R[ax] is a Nagata ring, by
Comment 5 above. Moreover, A and T have the same quotient field and T = A[x]. Thus, we may replace A
by R and begin again assuming T = R[x] with, x ∈ K, the quotient filed of R.

Let L be a finite extension of K (the quotient field of R and T ), write R̃ for the integral closure of R in L

and S for the integral closure of T in L. Then R̃ is an integrally closed Nagata ring, R̃ and R̃[x] have the

same quotient field and R̃[x] is finite over T , since R̃ is finite over R. Moreover, S = R̃[x]′. If we show R̃[x]′

is finite over R̃[x], then S will be finite over T , which is what we want. But now, R̃ is integrally closed, and

by Theorem H, R̃ is locally analytically unramified. Thus R̃[x]′ is finite over R̃[x] by Corollary E. □
We now easily recover the geometric case.

Corollary K. Let k be a field and R a finitely generated k-algebra. Then R is a Nagata ring. In particular,
the integral closure of R in a finite extension of its quotient field is a finite R-module.

Proof. k is a Nagata ring!

2. Krull Domains and the Mori-Nagata Theorem

The purpose of this part of the course is to address the degree to which the integral closure of a Noetherian
domain fails to be Noetherian. In the previous section, we saw that Nagata’s example shows that the integral
closure of a one-dimensional Noetherian domain R need not be a finite R-module. It is, however, a Noetherian
ring. This will follow from the results below. As mentioned above, the integral closure of a two-dimensional
Noetherian domain is again Noetherian, but this fails for Noetherian domains of dimension greater than two.
This failure is mitigated by the fact that the integral closure is Noetherian-like in codimension one. This is
made precise by saying that the integral closure of a Noetherian domain is a Krull domain, a fact known
as the Mori-Nagata theorem. Therefore, the purpose of this part of the course is to prove the Mori-Nagata
theorem.

Definition. Let S be an integral domain with quotient field L. We say that S is a Krull domain if the
following conditions hold.

(i) Each nonzero element of S is contained in only finitely many height one primes.
(ii) SQ is a DVR, for all height one primes Q ⊆ S.
(iii) S =

⋂
height(Q)=1 SQ.

There are a number of ways that a Krull domain behaves like an integrally closed Noetherian domain in
codimension one. We illustrate a few of these ways in the proposition below.

Proposition A2. The following properties hold.

(a) A Krull domain is integrally closed.
(b) An integrally closed Noetherian domain is a Krull domain.
(c) A Krull domain satisfies the ascending chain condition on principal ideals.
(d) If S is a Krull domain, 0 ̸= a ∈ S, and Q1, . . . , Qr are the height one prime ideals containing aS, then

there exist e1, . . . , er ≥ 1 such that aS = Q
(e1)
1 ∩· · ·∩Q

(er)
r is an irredundant primary decomposition

of aS.
(e) If S is a Krull domain and Q ⊆ S is a height one prime, then for any non-zero a ∈ Q, there exists

b ∈ S with Q = (aS : b).

Proof. It is easy to see that an intersection of integrally closed integral domains is integrally closed. Thus (a)
follows from (ii) and (iii) in the definition of Krull domain. For (b), Let R be an integrally closed Noetherian
domain. Condition (i) holds in R since R is Noetherain, and the height one primes containing a principal
ideal aR must be minimal over aR. Condition (ii) holds by Corollary B, since a prime minimal over an ideal
is an associated prime of the ideal. Condition (iii) follows from the fact that R =

⋂
P∈P(R) RP , where P(R)
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is the set of prime ideals associated to a non-zero principal ideal, and in case R is integrally closed, P(R) is
just the set of height one prime ideals.

For part (c), let a1S ⊆ a2S ⊆ · · · be an ascending chain of principal ideals. Let Q be a height one prime
not containing a1S. Then a1SQ = SQ, and thus anSQ = SQ for all n. Hence a1SQ = anSQ for all n. Now
let X be the finite set of height one primes containing a1S. Take Q ∈ X. Then since SQ is a DVR, there
exists r, depending on Q, such that arSQ = anSQ, for all n ≥ r. Since there are only finitely many primes
in X, we can take n0 the maximum of the r’s we just found. It follows that an0

SQ = anSQ, for all n ≥ n0

and all height one primes Q ⊆ S. This means an

an0
∈ SQ for all height one primes Q, and so by property (iii)

in the definition of Krull domain an

an0
∈ S, for all n ≥ n0. Thus an ∈ an0

S for all n ≥ n0 and therefore the

given ascending chain stabilizes at n0.

For part (d), first recall that if Q is a prime ideal in a commutative ring A, then we define the nth

symbolic power of Q to be the ideal QnAQ ∩ A. Since QnAQ is QQ-primary, Q(n) is Q-primary. Now fix
a non-zero element a ∈ S and let Q1, . . . , Qr be the height one prime ideals containing a. Let πi be the
uniformizing parameter for the DVR SQI

i.e., πiSQi = QiSQi , for all i. Then, there exist e1, . . . , er such

that aSQi = πei
i SQi = Qei

i SQi , for all i. Thus, aS ⊆ Q
(e1)
1 ∩· · ·∩Q

(er)
r . Now let x ∈ Q

(e1)
1 ∩· · ·∩Q

(er)
r . Then

x ∈ aSQi
for all i. Let Q be a height one prime not containing a. Then aSQ = SQ, and hence x ∈ aSQ. Thus

x ∈ aSQ, for all height one primes Q in S. In other words, x
a ∈

⋂
height(Q)=1 SQ = S. Thus, x ∈ aS, which

shows Q
(e1)
1 ∩ · · · ∩ Q

(er)
r ⊆ aS, which is what we want. Finally, the intersection is irredundant, since the

nilradicals of the Qi are distinct. So for instance, if aS = Q
(e2)
2 ∩ · · · ∩Q

(er)
r , then Q

(e2)
2 ∩ · · · ∩Q

(er)
r ⊆ Q1.

But then some Q
(ei)
i ⊆ Q1 which implies Qi ⊆ Q1, a contradiction.

For part (e), Let Q ⊆ S be a height one prime and 0 ̸= a ∈ Q. Take a primary decomposition of aS

as in part (d), and assume Q = Q1. By prime avoidance, we can find b∗ ∈ Q
(e2)
2 ∩ · · · ∩ Q

(er)
r \Q. Take

b0 ∈ Q(e−1)\Q(e) and set b := b∗b0. If c ∈ Q, then cb0 ∈ Q(e), and thus cb ∈ aS. On the other hand,
if cb ∈ aS ⊆ Q(e), then cb0 ∈ Q(e), by the choice of b∗. Thus, cb0 ∈ πeSQ, where πSQ = QSQ. Since
b0 ∈ πe−1SQ, we have c ∈ πSQ ∩ S = Q, which is what we want. Thus, Q = (aS : b). □
Remark. Maintain the notation from part (d) in the Proposition above. Then for the given a ∈ S as in

(d), for all n ≥ 1, anSQi
= πnei

i SQi
. Thus, arguing as before, it follows that anS = Q

(ne1)
1 ∩ · · · ∩Q

(ner)
r is

an irredundant primary decomposition of anR, for all n ≥ 1. Here we are using the fact that aS and anS
are contained in exactly the same set of height one prime ideals.

Examples. (a) Any UFD is easily seen to be a Krull domain. Thus, for example, if k is a field, the
polynomial ring in countably many variables over k is a non-Noetherian UFD, and hence a non-Noetherian
Krull domain.
(b) If R is a Krull domain, then a polynomial ring in countable many variables over R is a Krull domain.
Thus if R = K[x, y, z, w]/(xy− zw), then adjoining countably many variables yields a non-Noetherian Krull
domain that is not a UFD.

The following technical proposition due to J. Nishimura has a number of applications, including the lovely
theorem which follows it

Proposition B2. Let S be a Krull domain and Q ⊆ S a height one prime ideal. Then, for all n ≥ 1, the
S-module Q(n)/Q(n+1) embeds into S/Q.

Proof. By part (d) of Proposition A2, we can write Q = (aS : b), for a, b ∈ S. If we take a primary
decomposition

aS = Q(e) ∩Q
(e2)
2 ∩ · · · ∩Q(er)

r ,

the proof of part (d) shows that we can assume b ∈ Q(e−1) ∩Q
(e2)
2 ∩ · · · ∩Q

(er)
r . We claim that if x ∈ Q(n),

then x ∈ (anS : bn). Thus, x · bn

an ∈ S.

To see the claim, take s ∈ S\Q such that sx ∈ Qn. Then sxbn ∈ anS. Since Q(en) is the Q-primary

component of anS and s ̸∈ Q, xbn ∈ Q(en). On the other hand, bn ∈ Q
(ne2)
2 ∩ · · · ∩Q

(ner)
r , so xbn ∈ anS.
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We thus have an S-module map Q(n)
bn

an→ S → S/Q. Call this map φ. We need to show that if x ∈ Q(n),
then φ(x) ∈ Q if and only if x ∈ Q(n+1). If so, then φ induces an injective map from Q(n)/Q(n+1) into S/Q,
as required.

Take x ∈ Q(n) and assume π ∈ Q satisfies πSQ = QSQ. Suppose φ(x) ∈ Q. Then xbn ∈ Qan. Therefore,

xbn ∈ πanSQ. But in SQ, b = uπe−1 and a ∈ πeSQ, where u ∈ SQ is a unit. Thus xπn(e−1) ∈ πen+1SQ. It

follows that x ∈ πn+1SQ ∩ S = Q(n+1). Conversely, suppose x ∈ Q(n+1), Then there exists s ∈ S\Q such

that sx ∈ Qn+1. Then sxbn ∈ anQ. Therefore, s(x · bn

an ) ∈ Q. In other words, s · φ(x) ∈ Q. But φ(x) ∈ S
and s ̸∈ Q, so φ(x) ∈ Q, which is what we want. □
Theorem C2. (Nishimura) Let S be a Krull domain. If S/Q is Noetherian for all height one primes Q ⊆ S,
then S is Noetherian.

Proof. Let I ⊆ S be an ideal and take a non-zero a ∈ I. It suffices to show that I/aS is a finitely generated

S-module. Take the primary composition aS = Q
(e1)
1 ∩ · · · ∩Q

(er)
r as above, where the Qi are the height one

primes containing a. Then, on the one hand,

S/aS ↪→ S/Q
(e1)
1 ⊕ · · · ⊕ S/Q(er)

r ,

so it suffices to show that S/Q
(e1)
1 ⊕ · · · ⊕ S/Q

(er)
r is a Noetherian S-module.

On the other hand, given any height one prime Q ⊆ S, our assumption on Q and Proposition B2 show
that Q(n−1)/Q(n) is a Noetherian S/Q-module, and hence a Noetherian S-module, for all n ≥ 1 (since Q
annihilates Q(n−1)/Q(n)). Thus, induction on n and the short exact sequences

0 → Q(n−1)/Q(n) → S/Q(n) → S/Q(n−1) → 0

show that each S/Q(n) is a Noetherian S-module. Therefore, S/Q
(e1)
1 ⊕ · · · ⊕ S/Q

(er)
r is a Noetherian

S-module, which completes the proof. □
We will need several preliminary results before giving the proof of the Mori-Nagata theorem. We start

with the theorem of Matijevic, which generalizes the Krul-Akizuki theorem. For this result we need the
notion of the global transform of a Noetherian ring.

Definition. Let R be a Noetherian ring with total quotient ring K. The global transform of R is the set
T of elements x ∈ K such that (R : x) has the property that R/(R : x) is Artinian, i.e., R/(R : x) is
zero-dimensional. Equivalently, T consists of the set of elements x ∈ K such that (R : x) contains a product
of maximal ideals.

Remarks. 1. It is easy to check that T is a subring of K containing R. In fact, if x, y ∈ T , Jx ⊆ R,
Iy ⊆ R, and I, J each contain a product of (possibly different) maximal ideals, then JI contains a product
of maximal ideals and JIxy ⊆ R. Thus, xy ∈ T . The proof that x+ y ∈ T is similar.

2. If R has dimension one, then K is the global transform of R. Indeed, if x = a
b ∈ K, then b ∈ (R : x).

Since b is a non-zerodivisor, dim(R/bR) = 0. Thus, dim(R/(R : x)) = 0.

3. Suppose (R,m, k) is a local ring. Then the global transform is the set of elements x ∈ K such that there
exists n ≥ 1 with mn · x ⊆ R. This is the so-called ideal transform of m.

4. More generally, if I ⊆ R is an ideal, T (I), the ideal transform of I, is the set of elements x ∈ K such
that Inx ⊆ R, for some n ≥ 1. Note that if a

b belongs to the ideal transform of I, then Ina ⊆ bR, for some
n, which means I consists of zerodivisors modulo bR. Hence grade(I) = 1. In general, assuming T (I) ̸= R,
then T (I) need not be finite or integral over R, and in particular, it need not be a Noetherian ring. Ideal
transforms played a central role in Nagata’s construction of a counter-example to Hilbert’s 14th problem,
which asked whether or not rings of invariants of certain (infinite) linear groups acting on a polynomial ring
k[x1, . . . , xn] were finitely generated k-algebras.

5. Let I ⊆ R be a grade one ideal. We can write I = (x1, . . . , xr), with each x)i a non-zerodivisor. Then
T (I) = Rx1

∩ · · · ∩ Rxr
. To see this, if u ∈ T (I), then there exists n ≥ 1 such that xn

i · u ∈ R, for all i, so
u ∈ Rxi , for all i. Conversely, if u ∈ Rx1 ∩ · · · ∩Rxr , then taking n large enough, we have xn

i · u ∈ R, for all
i. Choosing c >> n, shows that Inu ⊆ R, so that u ∈ T (I).
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Here is Matijevic’s Theorem.

Theorem D2. Let R be a Noetherian ring with total quotient ring K and write T for the global transform
of R. Then for any ring R ⊆ A ⊆ T and non-zerodivisor x ∈ R, A/xA is a finite R-module. In particular,
A/xA is a Noetherian ring.

Proof. The second statement follows immediately from the first statement. For the first statement, it suffices
to show that A ⊆ Rx−n + xA, for some n ≥ 1. For then, as R-submodules of K, we have

A/xA ⊆ (Rx−n + xA)/xA ∼= Rx−n/(Rx−n ∩ xA),

so that A/xA is a submodule of a cyclic module. Fix a ∈ A. We first show there exists k ≥ 1 such that
a ∈ Rx−k+xA. Let J := (R : a), so that R/J is Artinian. Then the images of the ideals (xn) in R/J form a
descending sequence, which ultimately stabilizes. Thus, there exists k ≥ 1 such that (xk) + J = (xk+1) + J .
Write xk = rxk+1 + j, for some r ∈ R, j ∈ J . Multiplying by a gives axk = arxk+1 + aj, and hence
a = arx+ ajx−k. But aj ∈ R, so a ∈ Ax+Rx−k, as required.

Now consider the module (xA ∩ R)/xR. On the one hand, it is generated by the images in R/xR of
finitely many elements of the form aix. On the other hand, there is a product J of maximal ideal such that
Jai ∈ R, for all i. Thus, (xA ∩ R)/xR is a finitely generated module annihilated by a zero-dimensional
ideal, and must therefore have finite length, i.e., (xA∩R)/Rx is Artinian. Thus, the descending sequence of
submodules (xhA∩R,Rx)/Rx stabilizes. Thus, in R, the descending sequence of ideals Ih = (xhA∩R, xR)
stabilizes, at say, h = n. We claim A ⊆ Rx−n + xA.

Suppose a ∈ A does no belong to x−nR+xA. From the first paragraph, there exists k with a ∈ Rx−k+xA.
Note k > n. Choose k minimal with this property and write a = rx−k + xa′, where r ∈ R and a′ ∈ A. Then
axk = r+xk+1a′. Then xk(a−xa′) = r ∈ Ik = Ik+1. Thus, we can write xk(a−xa′) = xk+1a′′+r′x. Dividing
by xk, we have a− xa′ = xa′′ + r′x−k+1. Thus, a = x(a′′ − a′) + r′x−k+1. This means, a ∈ Rx−k+1 + xA,
contradicting the choice of k. Therefore, A ⊆ Rx−n + xA, as required. □
Corollary E2. Let R be a Noetherian domain with global transform T . Then any ring R ⊆ A ⊆ T is
Noetherian.

Proof. Let I ⊆ A be a non-zero ideal. Take 0 ̸= x ∈ I ∩ R. Then A/xA is Noetherian, so I/xA is finitely
generated. Thus, I is finitely generated. □
Corollary F2 (Krull-Akizuki.) Let R be a one-dimensional Noetherian domain with quotient field K.
Let L be a finite field extension of K. Then any ring R ⊆ A ⊆ L is Noetherian. Moreover, for any prime
ideal (necesarily a maximal ideal) Q ⊆ A and P = Q ∩R, [A/Q : R/P ] < ∞.

Proof. For the first statement, since L is finite over K, there exists a finite R-module R ⊆ R0 ⊆ A such that
R0 has quotient field L. Hence R0 is a one-dimensional Noetherian domain and A is contained in the global
transform of R0, so A is Noetherian by the previous corollary.

For the second statement, take a non-zero element x ∈ P . Then A/xA is a finite A0-module. It follows
that A/Q is finite over A and hence finite over A/Q0, for Q0 := Q ∩A0. Since A0 is finite over R, A0/Q0 is
finite over R/P . Since [A/Q : R/P ] = [A/Q : A0/Q0] · [A0 : R/P ], the proof is complete. □

The following corollary of the Krull-Akizuki theorem is very useful and plays a central role in the theory
of the integral closure of ideals in Noetherian rings.

Corollary G2. Let R be a Noetherian domain with quotient field K. Given a non-zero prime ideal P ⊆ R,
there exists a DVR (V,mV ) with mV ∩R = P .

Proof. Without loss of generality, we may localize at P and assume it is the unique maximal ideal of R.
Suppose P = (a1, . . . , an)R and set T := R[a2

a1
, . . . , an

a1
]. Note PT = a1T . Let Q ⊆ T be a height one prime

containing a1T . Then Q ∩R = P . TQ is a one-dimensional local domain, so by the Krull-Akizuki theorem,
T ′
Q is Noetherian. Take a maximal ideal m ⊆ T ′

Q lying over QTQ. Then V = (T ′
Q)m is a DVR and its

maximal ideal mV has the property that mV ∩ T = Q. Thus, mV ∩R = P , as required.

Remark. Corollary E2 holds if R is just a reduced Noetherian ring with total quotient ring K. Take
R ⊆ A ⊆ T . Since K is a localization of R, it is not difficult to see that A has finitely many minimal primes,
say Q1, . . . , Qr and they are all of the form QK ∩A, for Q a minimal prime of R. Let Qi ⊆ A be a minimal
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prime. Then Qi ∩ R is a minimal prime. The ring A/Qi lies between R/(Qi ∩ R) and its global transform,
and thus A/Qi is Noetherian. As such, it is also a Noetherian A-module, since the action of A on A/Qi is
the same as the action of A/Qi on itself. Since A ↪→ A/Qi ⊕ · · · ⊕ A/Qr, it follows that A is a Noetherian
A-module, and hence a Noetherian ring.

We want to present one more application of Matijevic’s theorem that applies to ideal transforms - even
though it is not related to the Mori-Nagata theorem. This result shows that for local rings (R,m) with well
behaved completions, the transform T (m) is a finite R-module. In some sense, this is not saying too much,
because if R has depth greater than one, T (m) = R. For this result we need the lemma below and the
following standard fact we leave as an exercise. If (R,m) is a complete local ring, then R is complete in the
I-adic topology, for any ideal I ⊆ R. We note that the condition on the completion of R in Theorem I2 will
always hold for a local ring from algebraic geometry that is reduced and equidimensional, e.g., an integral
domain.

Lemma H2. Let (R,m) be a local ring. Then T (m) is a finite T -module if and only if T (mR̂) is a finite

R̂-module.

Proof. By Remark 5 after the definition of the global transform, T (m) = Rx1
∩ · · · ∩Rxr

. Therefore,

T (m)⊗ R̂ = Rx1
∩ · · · ∩Rxr

⊗ R̂ = R̂x1
∩ · · · ∩ R̂xr

= T (mR̂),

since tensoring with a faithfully flat extension distributes over a finite intersection. Thus, T (mR̂) = T (m)⊗R̂.

By faithful flatness, T (m) is finite over R if and only if T (mR̂) is finite over R̂. □
Theorem I2. Let (R,m) be a local ring with positive depth. Then T (m) is a finite R-module if and only if

there does not exist z ∈ Ass(R̂) with dim(R̂/z) = 1.

Proof. By the previous lemma, we may assume R is complete. Suppose T is not finite over R and take
x ∈ R be a non-zerodivisor. By Matijevic’s theorem, T/xT is finite over R. Thus, it must be the case that⋂

n≥1 x
nT ̸= 0. Let a ∈ R be a not-zero element in

⋂
n≥1 x

nT . Then a
xn ∈ T , for all n ≥ 1. Thus, for each

n ≥ 1, there exists s(n) ≥ 1 with ms(n) · a
xn ⊆ R. In other words, ms(n) ⊆ (xnR : a), for all n. However, there

exists k ≥ 1 such that (xn : a) ⊆ (0 : a) + xn−kR, for n ≥ k (a consequence of Artin-Rees). If z ∈ Ass(R)
contains (0 : a), and n = k+ 1, we have ms(n) ⊆ x+ zR. Thus, m is minimal over x+ zR, so dim(R/z) = 1,
by Krull’s principal ideal theorem.

Conversely, suppose dim(R/z) = 1, for (0 : a) = z ∈ Ass(R). Take x ∈ R a non-zerodivisor. Then for
all n ≥ 1, there exists s(n) such that ms(n) ⊆ xnR + (0 : a). Therefore, ms(n)a ⊆ xn, for all n, and thus
q
xn ∈ T (m), for all n ≥ 1. But then R · a

x ⊊ R · a
x2 ⊊ · · · is a strictly increasing chain of submodules of T (m).

Therefore, T (m) is not finite over R. □
The following corollary is for those who are familiar with local cohomology.

Corollary J2. Let (R,m) be a local ring having depth one. Thus H1
m(R) ̸= 0. Then H1

m(R) is finite if and

only if if there does not exist z ∈ Ass(R̂) with dim(R̂/z) = 1.

Proof. Set K to be the total quotient ring of R. Note that mK = K, so Hi
m(K) = 0 for all i. The short

exact sequence 0 → R → K → K/R → 0 gives rise to the long exact sequence in cohomology

· · · → H0
m(K) → H0

m(K/R) → H1
m(R) → H1

m(K) → · · · ,
Since H0

m(K) = H1
m(K) = 0, we have that H0

m(K/R) is isomorphic to H1
m(R). But H0

m(K/R) is just T (m)/R.
Thus, H1

m(R) is a finite R-module if and only if T (m)/R is a finite R-module. But this latter module is finite
over R if and only if T (m) is finite over R. Thus, Theorem I2 implies that H1

m(R) is a finite R-module if and

only if there does not exist z ∈ Ass(R̂) with dim(R̂/z) = 1, which completes the proof. □
We now turn our attention to the Mori-Nagata Theorem. The proof is based upon ideas of Nagata, Rees,

Querre, and McAdam. The original proof due to Nagata used the Cohen structure theorem and properties
of completions; in particular, the fact that a complete local domain is finite over a complete regular local
ring. More modern treatments, like the one below, avoid the use of completions.

The following is our first lemma. A crucial point in Nagata’s proof of the Mori-Nagata theorem was that
height one primes in the integral closure of a Noetherian domain R contract to grade one primes in R. His
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original proof was difficult and required passage to the completion. McAdam gave an elementary proof of
this fact. In the lemma below, we adjust McAdam’s argument so that it applies to primes in the integral
closure minimal over colon ideals. This gives us considerably more mileage. Of course, after the fact, such
primes are indeed height one primes.

Lemma K2. Let R be a Noetherian domain with integral closure S. Take a, b ∈ R, assume that Q ⊆ S is
minimal prime over (aS :S b) and set P := Q ∩R. Then P is an associated prime of R/aR.

Proof. We may assume R is local at P . Since Q is minimal over (a :S b)S, for all q ∈ Q, there exists s ∈ S\Q
such that s · qhb ∈ aS, for some h. If we do this for the finitely many generators of P , it follows that there
exists s ∈ S\Q, t ≥ 1 and a ring R ⊆ R0 ⊆ S, such that P t · sb ⊆ aR′ and R0 is a finite R-module. Thus,
for all n ≥ 1, Pnt · snbn ⊆ anR0. Let 0 ̸= c ∈ R satisfy c · R0 ⊆ R. Then, Pnt · (csnbn) ⊆ anR, for all n.
If csnbn ∈ anR, for all n, then R[ sba ] ⊆ R · 1

c . This implies that sb
a ∈ S, which implies s ∈ (aS :S b) ⊆ Q, a

contradiction. Thus, for some n, csnbn ̸∈ anR. Therefore, Pnt consists of zero divisors modulo anR. Since
P is maximal, it follows that P ∈ Ass(R/anR), and hence P ∈ Ass(R/aR), which gives what we want. □
Lemma L2. Let R be a Noetherian domain and set A := S ∩T , where T is the global transform of R and S
is the integral closure of R. If P ⊆ A is a maximal ideal and P is an associated prime of a principal ideal,
then AP is a DVR.

Proof. Suppose P = (aA : b) is maximal. If m := R ∩ P , then m is maximal (since A is integral over R)
and m(b/a) is contained in A ⊆ T , so Jm(b/a) ∈ T , for J ⊆ R a product of maximal ideals. Thus, b/a ∈ T .
Now, either P · P−1 = P or P · P−1 = A. In the first case, we get P · b/a ⊆ P , which would implies b/a is
integral over R and thus b/a ∈ S. But then b/a ∈ A, contradiction. Thus, P is invertible, so PP is principal.
i.e., AP is a DVR. □
Corollary M2. Let R be a Noetherian domain with integral closure S. Let a, b ∈ R and suppose that Q ⊆ S
is a prime ideal minimal over (aS :S b). Set P := Q ∩R. Then Q has height one and there are only finitely
many height one prime ideals Q := Q1, . . . , Qh in S lying over P . Morover, for any 1 ≤ i ≤ h, SQi

is a
DVR.

Proof. We may assume that R is local at P . Let A be as in the Lemma E2. By the first lemma, applied
to the ring A, Q ∩ A is associated to a principal ideal. Thus, by Lemma E2, AQ∩A is a DVR. It follows
that AQ∩A = SQ. In particular, Q has height one. Now the same argument applies to any height one
prime in S lying over P . Thus, these all contract to distinct primes in A containing PA. Moreover, since
each contraction to A is minimal over PA (by lying over), these contractions are finite in number since A is
Noetherian. Thus, only finitely many height one primes in S contract to P . □

We now state and prove the Mori-Nagata theorem :

Theorem N2. Let R be a Noetherian integral domain with quotient field K and let L be a finite algebraic
extension of K. Write S for the integral closure of R in L. Then :

(1) S is a Krull domain.
(2) For every prime ideal P ⊆ R, there are only finitely many primes Q ⊆ S lying over P . Moreover,

for any such Q, [k(Q) : k(P )] < ∞.

Proof. For (1), we first reduce to the case that K = L. Indeed, since L is finite over K, we may find a
subring R0 of S with the following properties : R′ is finite over R and R0 has quotient field L. Thus, S is
the integral closure of R0. Changing notation, we may start again, assuming simply that S is the integral
cosure of R.

We now check off the properties required in verifying that S is a Krull domain. First, let Q ⊆ S be a
height one prime ideal. Take 0 ̸= a ∈ Q ∩ R. Then Q is minimal over (a :S 1), so by Corollary C, SQ is a
DVR.

Second, let 0 ̸= s ∈ S. If we show that some multiple of s is contained in only finitely many height one
primes in S, then the same holds for s. Thus, we take a ∈ R, any non-zero multiple of s in R. If Q is a height
one prime containing a, then by Lemma D2, P := Q ∩ R is an associated prime of R/aR. By Corollary F2
only finitely many height one primes in S lie over P . Since R/aR has only finitely many associated primes,
there can only be finitely many height one primes containing aS.

12



Finally, suppose that x ∈
⋂

SQ, where the intersection ranges over the height one primes of S. We can
write x := b/a, for b, a ∈ R. If x is not in S, then (aS :S b) is a proper ideal. Let Q be a minimal prime over
(aS :S b). By Corollary F2, Q has height one. But x ∈ SQ, contradiction. Thus, S is the intersection of its
localizations at height one primes. So, S is a Krull domain.

For statement (2) in the theorem, let P ⊆ R be a prime ideal. We may assume R is local at P . Let Q ⊆ S
lie over P . We first show by induction on the height of P that [k(Q) : k(P )] < ∞. When P has height
one, R has dimension one, so we can apply Krull-Akizuki. Suppose the height of P is greater than one. If
Q has height one, we let A be as before. As in Corollary F2, AQ∩A = SQ, so k(Q) = k(Q ∩ A). But now,
if a is any non-zero element in P , A/aA is finite over R, so A/Q ∩ A is finite over R/P , which then gives
[k(Q ∩ A) : k(P )] < ∞. Suppose Q has height greater than one. Then we take Q′ properly contained in Q
and P ′ := Q′ ∩ R. By induction applied to P ′, the quotient field of S/Q′ is finite over the quotient field of
R/P ′. Thus, induction applied to P/P ′ shows that [k(Q/Q′) : k(P/P ′)] < ∞. But, k(Q/Q′) = k(Q) and
k(P/P ′) = k(P ), so, [k(Q) : k(P )] < ∞.

Finally, for P as in the preceding paragraph, we show that there are only finitely many primes Q ⊆ S
lying over P . First note that by Corollary 2F, there are only finitely many height one primes in S lying
over P . This also completes the proof if the height of P is one, since any prime Q lying over a height one
prime has height one. Now, let 0 ̸= a belong to P . On the one hand, since S is a Krull domain, there are
only finitely many minimal primes in S, all of height one, containing aS. On the other hand, any prime
Q of height greater than one which contracts to P must contain one of these minimal primes. Let Q′ be
a height one prime containing aS and set P ′ := Q′ ∩ R. By the preceding paragraph, the quotient field of
S/Q′ is finite over the quotient field of R/P ′. Thus, by induction on the height of P , in the integral closure
S0 of R/P ′ in k(Q′), there are only finitely many primes lying over P/P ′. It follows that S/Q′ contains only
finitely many primes lying over P/P ′ (since any such prime lifts to a prime in S0 lying over P/P ′ ). Thus,
there are only finitely many primes in S containing Q′ lying over P . Since this holds for each of the finitely
many minimal primes of aS, we conclude that there are also only finitely many primes of height greater than
one in S lying over P . This completes the proof of the Mori-Nagata theorem. □

As applications of the Mori-Nagata theorem, we will prove that the integral closure of a two-dimensional
Noetherian domain is Noetherian and that a complete local domain satisfies N2.

Theorem O2. Let R be a two-dimensonal Noetherian domain with quotient field K. Let S be the integral
closure of R in a finite extension of its quotient field. Then S is Noetherian.

Proof. By the Mori-Nagata theorem, S is a Krull domain, so by Nishimura’s theorem (Theorem C2),
it suffices to prove that S/Q is Noetherian for all height one primes Q ⊆ S. Take such a prime and set
P = Q∩R. Note that R/P is a one-dimensional Noetherian domain with quotient field k(P ). By the second
part of the Mori-Nagata theorem, [k(Q) : k(P )] is finite. Since R/P ⊆ S/Q ⊆ k(Q), S/Q is Noetherian, by
the Krull-Akizuki theorem, and the proof is complete. □

The standard proof of the next theorem appeals to the Cohen Structure Theorem. The proof below avoids
the use of Cohen’s Structure Theorem, and is modeled on the proof of Nishimura’s Theorem C2.

Theorem P2. Let (R,m) be a complete local domain with quotient field K. Let L be a finite extension of K
and S be the integral closure of R in L. The S is a finitely generated R-module. In other words, R satisfies
the Nagata condition N2.

Proof. We will use the fact that if M is an R module and M satisfies the two conditions: (i) M/PM is finite
over R and (ii)

⋂
n≥1 m

nM = 0, then M is finite over R.
Now, we induct on the dimension of R. Suppose R has dimension one and let a be any non-zero element

in m. Then by the Krull-Akizuki theorem (or Matijevic’s theorem), S/aS is finite over R. Thus, S/mS is
finite over R. On the other hand, S is a Noetherian domain, so

⋂
n≥1 m

nS = 0. Thus, S is a finite R-module.
Suppose that R has dimension greater than one. Let Q ⊆ S be a height one prime. Then by the Mori-

Nagata theorem, [k(Q) : k(Q∩R)] < ∞, so by induction applied to the complete local domain R/Q∩R, S/Q
is a finite R/Q∩R-module, and thus is finite over R. By Nishimura’s Proposion B2, Q(n)/Q(n+1) is finite over
R for all n. Thus, induction applied to the exact sequences 0 → Q(n)/Q(n+1) → S/Q(n+1) → S/Q(n) → 0
shows that S/Q(n) is finite over R, for all n ≥ 1.
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Now, let a be any non-zero element of m. Since S is a Krull domain, aS has a primary decomposition

aS = Q
(n1)
1 ∩ · · · ∩Q

(nh)
h , where the Qi are height one primes in S and each n1 ≥ 1. Since S/aS embeds into

S/Q
(n1)
1 ⊕ · · · ⊕ S/Q

(nh)
h , it follows that S/aS is finite over R. Thus, S/mS is finite over R.

Finally, to see that
⋂

n≥1 m
nS = 0, let R0 ⊆ S be finite over R and birational to S and take P a prime (in

fact, its the only one) lying over m. Then there exists a DVR (V,mV ) in L with R0 ⊆ V and mV ∩R′ = P ′.
Since V is integrally closed, S ⊆ V . Thus, mnS ⊆ mn

V , for all n. Since
⋂

n≥1 m
n
v = 0, it follows that⋂

n≥1 m
nS = 0, which is what we want. Therefore, S is finite over R. □

3. Quasi-unmixedness and Ratliff’s Theorem

The purpose of this section is to study quasi-unmixed local rings with the goal of proving a fundamental
theorem due to Ratliiff, which gives equivalent conditions for a local ring (R,m) to be quasi-unmixed. Recall

that R is said to be quasi-unmixed or formally equi-dimensional if dim(R̂/q) = dim(R̂), for all minimal

primes q ⊆ R̂. Here is Ratliff’s Theorem, stated for integral domains.

Theorem A3. Let (R,m) be a local integral domain. The following statements are equivalent.

(i) R is quasi-unmixed.
(ii) R is universally catenary.
(iii) R satisfies the dimension formula.

To address the other conditions in Ratliff’s theorem, we need a few definitions.

Definition. Let S be a Noetherian ring.
(i) S is catenary if for all pairs of primes P ⊆ Q ⊆ S, all saturated chains of prime ideals between P and Q
have the same length.
(ii) S is universally catenary if every finitely generated S-algebra is catenary.
(iii) If S is an integral domain, then S satisfies the dimension formula if for every finitely generated S-algebra
T and prime ideal Q ⊆ T , we have:

height(Q) + tr.degk(Q∩S)k(Q) = height(Q ∩ S) + tr.degST.

Several remarks are in order.

Remarks. (i) The conditions in Ratliff’s theorem are not equivalent if R is an arbitrary local ring - for trivial
reasons. For example, the ring k[[x, y, z]]/(x) ∩ (y, z) is a complete local ring and therefore is universally
catenary, something we will see later in this section. On the other hand it is not equi-dimensional and since
it is complete, it is not quasi-unmixed. If we assume that R is equi-dimensional, then conditions (i) and (ii)
in Ratliff’s theorem are equivalent. But the proof of this equivalence easily reduces to the domain case.

(ii) It turns out that the rings from algebraic geometry are all universally catenary. In the late 1940s and early
1950s, it was not known whether or not Noetherian rings in general were catenary or universally catenary. In
the mid 1950s, Nagata gave an example of a Noetherian ring that was catenary, but not universally catenary.

(iii) If S ⊆ T an extension of Noetherian domains and T is a finitely generated algebra over S, then the
following dimension inequality always holds:

height(Q) + tr.degk(Q∩S)k(Q) ≤ height(Q ∩ S) + tr.degST.

(iv) To invoke the dimension formula, one needs an extension of integral domains. One could make a
definition in the case that S is not a domain, by requiring that S/q satisfies the dimension formula for all
minimal primes q ⊆ S. Again, in order to have conditions (i) and (iii) in Ratliff’s theorem equivalent, one
would have to require that S be equi-dimensional, and this case too reduces easily to the case that S is an
integral domain.

(v) It is not difficult to see that if S is a Noetherian domain, then the dimension formula holds between
S and S[x], the polynomial ring over S. To see this, note that tr.degSS[x] = 1. Take a prime Q ⊆ S[x]
and set P = Q ∩ S. There are two cases to consider. If Q = PS[x], then height(P ) = height(Q) and
S[x]/Q = S/P [x], and thus tr.degS/PS[x]/Q = 1. So the dimension formula holds between S and S[x]. If
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Q ̸= PS[x], then height(Q) = 1+height(P ) and S[x]/Q is algebraic over S/P , so again, the required equality
holds. 1

We now work towards a characterization of quasi-unmixed local rings obtained by studying asymptotic
sequences, an integral closure analogue of regular sequences. However, our first goal is to show that if I ⊆ R
is an ideal, then

⋃
n≥1 Ass(R/In) is finite. Throughout the remainder of this section, R denotes a Noetherian

ring.

Lemma B3. Let S be a Noetherian ring and J ⊆ S be an ideal. Then for a ∈ S, a ∈ J if and only if for
all minimal primes q ⊆ S, the image of a in S/q belongs to (J + q)/q.

Proof. The forward direction is clear. Suppose the image of a in S/q belongs to (J + q)/q, for all minimal
primes q ⊆ S. Then for each q there is an n (depending on q) and equation of the form

an + j1a
n−1 + · · ·+ jn ≡ 0 mod q,

where each ji ∈ J i. Taking the product of these equations yields an equation of the form

am + j1a
m−1 + · · ·+ jm ≡ 0 mod N,

where each ji ∈ J i, and N denotes the nilradical of S. Raising this last congruence to an appropriate power
shows a ∈ J . □
Corollary C3. Let S be a Noetherian ring and J ⊆ S be an ideal. If P ∈ Ass(S/J), then there is a minimal
prime q ⊆ P with P/q ∈ Ass S/J + q.

Proof. Without loss of generality, we assume S is local at P . Write P = (J : a), for some a ̸∈ J . Then,

by Lemma B2, a ̸∈ (J + q)/q, for some minimal primes q ⊆ S/q. Thus, P/q consists of zerodivisors mod

(J + q)/q, which gives what we want. □
Remark. The previous corollary works, even if J has height zero. If J is nilpotent, then A∗(J) is just the
set of minimal primes, so that q = P and J both become zero modulo P , so the conclusion is trivially true.
If J is not nilpotent, then q in the corollary is one of the minimal primes not containing J , and in R/q, the
image of J has height greater than zero.

The next crucial proposition is a nice application of the Mori-Nagata theorem and properties of Krull
domains.

Proposition D3. Let S be a Noetherian domain and 0 ̸= a ∈ S. Then P ∈ Ass (S/an)S for some n ≥ 1
if and only if there exists a height one prime Q ⊆ S′ containing a such that Q ∩ S = P . In particular⋃

n≥1 Ass (S/anS) is a finite set.

Proof. The second statement follows immediately from the first. To prove the first statement, we may
assume R is local at P .

Suppose P ∈ Ass (S/anS) for some n ≥ 1 and write P = (anS : b), with b ̸∈ anS. Let Q1, . . . , Qr be the
height one primes in the Krull domain S′ containing a, and write anS′ = C1 ∩ · · · ∩ Cr, where each Ci is
Qi-primary. Since anS′ ∩ S = anS, b ̸∈ Ci, some i. But Pb ⊆ anS′ ⊆ Ci, so we must have P ⊆ Qi, since Ci

is Qi-primary. Therefore Qi ∩ S = P .

The proof of the converse requires just minor tweaking of the proof of Lemma K2. Take a height one
prime Q ⊆ S′ containing a. Since Q is minimal over aS′, for all q ∈ Q, there exists s ∈ S′\Q such that
s · qh ∈ aS′, for some h. If we do this for the finitely many generators of P , it follows that there exists
s ∈ S′\Q, t ≥ 1 and a ring S ⊆ S0 ⊆ S′, such that P t · s ⊆ aS0 and S0 is a finite S-module. Thus, for all
n ≥ 1, Pnt · sn ⊆ anS0. Let 0 ̸= c ∈ S satisfy c · S0 ⊆ S. Then, Pnt · (csn) ⊆ anS ⊆ anS, for all n.

If csn ∈ anS for all n, then c ∈ anS′
Q, for all n, since s ̸∈ Q. But then c ∈

⋂
n≥1 a

nS′
Q = 0, since S′

Q is a

DVR. This is a contradiction. Thus csn ̸∈ anS, for some n, which implies P ∈ Ass (S/anS), which is what
we want. □

1If Q ̸= PS[x] = P [x], then in the ring obtained by localizing at P and modding out P , the image of Q in k(P )[x] is
just a maximal ideal generated by an irreducible polynomial in k(P )[x]. Therefore, modding out this image gives an algebraic

extension of k(P ).

15



Remark. Note that the last paragraph of the proof above shows that if S is a Noetherian domain and
0 ̸= a ∈ S, then

⋂
n≥1 a

nS = 0. This is extended to arbitrary ideals below.

Corollary E3. Let S be a Noetherian ring and a ∈ S be a non-zerodivisor. Then
⋃

n≥1 Ass (S/anS) is
finite.

Proof. Immediate from C3 and D3.

We need one more lemma before we can show that
⋃

n≥1 Ass(R/In) is finite.

Lemma F3. Let I ⊆ R be an ideal and R := R[It, t−1] denote the extended Rees aring of R with respect to
I. Then for all n ≥ 1:

(i) In = t−nR∩R.

(ii) The vth graded component of t−nR is (Iv ∩ In+v)tv, for all v.

Proof. For (i), take a ∈ R. Suppose a ∈ In. Then there exists an equation of the form

as + ina
s−1 + i2na

s−2 + · · ·+ isn = 0,

where each ijn ∈ In. Multiply this equation by tsn to get

(
a

t−n
)s + int

n(
a

t−n
)s−1 + i2nt

2n(
a

t−n
)s−2 + · · ·+ isnt

sn = 0. (∗)

This shows a
t−n is integral over R, so a ∈ t−nR.

Conversely, if a ∈ t−nR ∩ R, then a
t−n is integral over R. By comparing terms of the same degree in an

equation of integral dependence of a
t−n over R, we may work backwards from an equation like (*) to show

a ∈ In. □
The proof of (ii) is almost the same. Suppose ctr ∈ t−nR. Then clearly c ∈ Iv. On the other hand,

ctv

t−n = ctv+n is integral over R. Thus, there exists an equation of the form

(ctv+n)s + f1(ct
v+n)s−1 + · · ·+ fs = 0,

with fi ∈ R. Taking the coefficient of ts(tn+v) in this equation gives

cs + j1c
s−1 + · · ·+ js = 0,

where each ji ∈ Ii(v+n). Thus, c ∈ In+v, which gives what we want. The proof of the converse is similar, □
Theorem G3. For any ideal I ⊆ R,

⋃
n≥1 Ass(R/In) is finite.

Proof. Suppose P = (In : c), for some n ≥ 1 and c ̸∈ In. Localize R at P . By the previous lemma, c ̸∈ t−nR.

Thus P consists of zero divisors on R/t−nR. It follows that PR ⊆ Q, for some Q ∈ Ass (R/t−nR). Thus,

Q∩R = P . By Corollary E3,
⋃

n≥1 Ass (R/t−nR) is finite. This forces
⋃

n≥1 Ass (R/In) to be finite, which
is what we want. □
Remarks. (i) We denote the finite set of prime ideals in Theorem G3 by A∗(I). Note that x ∈ R is a
zerodivisor modulo In for some n if and only if x ∈ P , for some P ∈ A∗(I).

(ii) The proof of the Theorem G3 can be adapted to show the following: If R ⊆ S are Noetherian rings, and
J ⊆ S is an ideal, then, if P ∈ Ass R/(J ∩R), there exists Q ∈ Ass S/J such that Q ∩R = P .

(iii) There is a stronger version of Theorem G3. Ratliff has shown that if height(I) > 0, then the sets

Ass R/I ⊆ AssR/I2 ⊆ · · · form an ascending chain. Since the union of these set is finite, this increasing
chain of sets must stabilize and we have that there exists an n0 such that

⋃
n≥1 Ass R/In = Ass R/In0 .

(iv) The stronger statement in (iii) is an integral closure analogue of a theorem due to M. Brodmann who
showed that for all finitely generated R-modulesM and ideals I ⊆ R, Ass (M/InM) is stable for n sufficiently
large. However, the sets Ass (M/InM) need not be an increasing set of prime ideals. When M = R, we will
denote this stable value A∗(I). A theorem of Ratliff shows that A∗(I) ⊆ A∗(I).

Definition. A sequence of elements x1, . . . , xr ∈ R is said to be an asymptotic sequence if for each 1 ≤ i ≤ r,
xi does not belong to any prime ideal in A∗((x1, . . . , xi−1)R). In other words, for all i, xi is not a zerodivisor

modulo (x1, . . . , xi−1)nR, for all n.
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Remarks. (i) Asymptotic sequences in the form above were defined independently Ratliff and D. Katz.
Earlier, Rees had defined the notion of an asymptotic sequence over I, for an ideal I contained in a local
ring. His definition was to assume that xi is not a zero divisor modulo (I, xi, . . . , xi−1)nR, for all n and all
i. Rees used this concept to improve an earlier inequality of Burch that related the analytic spread of an
ideal I ⊆ R to a difference between the dimension of R and the the depths of the modules R/In.

(ii) Ratliff and DK studied properties of asymptotic sequences, discarding the ideal I. They independently
proved (DK in his UT Austin PhD thesis) that a local ring is quasi-unmixed if and only if some (every)
system of parameters forms an asymptotic sequence. This theorem will be our next goal. Using this result
one can give a natural proof of Ratliff’s theorem, once one knows a little about how the dimension formula
is related to the universally catenary property.

(iii) A regular sequence is an asymptotic sequence, though this is not obvious from the definitions. However,
this is clear in the case of a single element, because x is the first element in a regular sequence if and only if
x is a non-zerodivisor, while x is is the first element in an asymptotic sequence if and only if height(xR) = 1,
since A∗(0) is the set of minimal prime ideals of R.

Our immediate goal is to proof some basic properties about asymptotic sequences. The following theorem
is due to Ratliff and DK.

Theorem H3. Let (R,m) be a local ring and assume dim(R) > 0. Let x1, . . . , xr ∈ R be a sequence of
elements. The following properties hold.

(i) x1, . . . , xr form an asymptotic sequence if and only if they form an asymptotic sequence in R̂.
(ii) x1, . . . , xr form an asymptotic sequence if and only if their images in R/q form an asymptotic sequnce

for all minimal primes q ⊆ R.

(iii) x1, . . . , xr form an asymptotic sequence if and only the images of x1, . . . , xr in R̂/z generate an ideal

of height r, for all minimal primes z ⊆ R̂.
(iv) Any permutation of an asymptotic sequence is an asymptotic sequence.
(v) The set of all maximal asymptotic sequences in R have the same length, which is equal to the

minimum of dim(R̂/z), taken over all minimal primes z ⊆ R̂.

We will need a number of preliminary results in order to prove Theorem H3.

Proposition I3. Let R be a Noetherian ring and I ⊆ R and ideal. Let R denote the extended Rees ring of
R with respect to I. Then P ∈ A∗(I) if and only if there exists Q ∈ A∗(t−1R) such that Q ∩R = P .

Proof. If P ∈ A∗(I), then the proof of Theorem G3 shows that there exists Q ∈ A∗(t−1R) such that
Q∩R = P . Conversely, suppose there exists Q ∈ A∗(t−1R) such that Q∩R = P . Without lost of generality

we may assume R is local at P . Since R is a graded ring, we can write Q = (t−nR : ctv), for some ctv ∈ R.

Since ctv ̸∈ t−nR, Lemma F3 gives c ̸∈ In+v. Note that this implies that n + v ≥ 1, since the degree j
components of R equal R when j ≤ 0. On the other hand, P ⊆ Q, so in R we have P · ctn ⊆ t−nR, which
by Lemma F3 gives P · c ⊆ In+v. Since P is maximal, we have P ∈ Ass (R/In+v) ⊆ A∗(I), as required. □
Lemma J3. ˙Let S be a Noetherian ring and J ⊆ S an ideal. Then

⋂
n≥1 J

n = N0, where N0 is the
intersection of the minimal primes q ⊆ R satisfying J + q ̸= S. In particular, if J is contained in the
Jacobson radical of S, then

⋂
n≥1 J

n = N , the nilradical of S.

Proof. Let us first assume the result holds when S is an integral domain. Let a ∈
⋂

n≥1 J
n. If q ⊆ S is a

minimal prime such that J + q ̸= S, then a ∈
⋂

n≥1 (J
n + q)/q ≡ 0 mod q by the domain case, and thus a

belongs to q. Conversely, if a ∈ N0, let q1, . . . , qt denote the minimal primes of S for which J+qi = S. Note,
if there are no such primes, a ∈ N , which clearly belongs to Jn, for all n. Now, Jn+ qi = S, for all n and all
i. Fix n. For each i, we can write 1+ji = xi, with ji ∈ Jn and xi ∈ qi. Thus b := a(1+j1) · · · (1+jt) belongs
to the nilradical of S. Therefore bc = 0 for some c ≥ 1. But this gives an equation of integral dependence of
a on Jn, which shows a ∈ Jn, for all n.

Now suppose S is a Noetherian domain and J ⊆ S is a proper ideal. Let R denote the extended Rees ring
of S with respect to J . By Lemma F3, Jn = t−nR ∩ S, for all n. On the other hand, the remark following
Proposition D3 shows

⋂
n≥1 t

−nR = 0, which completes the proof. □
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Proposition K3. Let S be a Noetherian ring, J ⊆ S an ideal with height(J) > 0 and q ⊆ S a minimal
prime ideal. Suppose the prime ideal P is minimal over J + q. Then there exists n ≥ 1 with the following
property: P ∈ Ass (R/L) for all ideals Jn ⊆ L ⊆ Jn.

Proof. Standard properties of localization show that if n satisfies the conclusion of the proposition for RP ,
it also satisfies the conclusion for R. Thus, we may assume R is local at P . It follows that P s ⊆ J + q for
some s. On the other hand, since q is a minimal prime, there exists b ̸∈ q such that bqc = 0, for some c ≥ 1.
Since b ̸∈ q, by the previous lemma, there exists n such that b ̸∈ Jn. Now P sc ⊆ J + qc, so P scn ⊆ Jn + qnc.
Thus, P scn · b ⊆ Jn ⊆ L, for all L between Jn and Jn. Since b ̸∈ Jn, P scn consists of zero-divisors modulo
L. Since P is maximal, we have P ∈ Ass (S/L), as required. □

The next proposition due to Ratliff plays an important role in our story.

Proposition L3. Let S be a Noetherian domain and 0 ̸= a ∈ S. Suppose S satisfies the dimension formula.
If P ∈ A∗(aS), then height(P ) = 1.

Proof. By Proposition D3, there exists a height one prime Q ⊆ S′ such that Q ∩ S = P . Let Q,Q2, . . . , Qr

be the prime ideals in S′ lying over P and take u ∈ Q\Q2 ∪ · · · ∪ Qr. Note that on the one hand, the
Mori-Ngata theorem guarantees that there are just finitely many primes in S′ lying over P , while on the
other hand, since S′ is integral over S, the primes lying over P are incomparable, so we may choose such a
u. Set Q0 = Q ∩ S[u]. We claim height(Q0) = 1. Suppose the claim holds. Note Q0 ∩ R = P . Then since
S[u] is integral over S and thus k(Q0) is algebraic over k(P ), the dimension formula applied to the extension
S[⊆ S[u] shows that height(P ) = 1, which is what we want.

For the claim, since u ∈ Q0, the choice of u implies that Q is the only prime in S′ lying over Q0, since
any such prime lies over P . If height(Q0) > 1, we take take Q′ ⊊ Q0. By the going up property, there are
primes Qc ⊆ Qd in S′ such that Qc ∩ S[u] = Q′ and Qd ∩ S[u] = Q0. But Q is the only prime in S′ lying
over Q0, so Q = Qd. But this contradicts height(Q) = 1. Thus, we must have height(Q0) = 1 and the proof
is complete. □

The proof of the next theorem requires the fact that a complete local domain satisfies the dimension
formula. We will eventually prove this fact below.

Theorem M3. Let (R,m) be a local ring and I ⊆ R an ideal. Then for a prime ideal P ⊆ R, P ∈ A∗(I)

if and only if there exists Q ∈ A∗(IR̂) such that Q ∩R = P .

Proof. We first note that for any ideal J ⊆ R, JR̂ ∩ R = J . If this holds, then the forward direction of the

theorem follows from Remark (ii) following Theorem G3. Clearly J ⊆ JR̂ ∩ R. Conversely, suppose a ∈ R
satisfies an equation of the form

as + j1a
s−1 + · · ·+ jss,

where each jk ∈ JkR̂. Thus, as ∈ (as−1J, as−2J2, . . . , Js)R̂ ∩ R = (as−1J, as−2J2, . . . , Js)R, by faithful
flatness. This last relation shows a ∈ J .

For the converse, suppose Q ∈ A∗(IR̂) and Q ∩ R = P . Set R̂ := R ⊗ R̂, a faithfully flat extension

of R, and note that R̂ is the extended Rees ring of R̂ with respect to IR̂. By proposition I3, there exists

Q0 ∈ Ass (R̂/t−nR̂), for some n, with Q0 ∩ R̂ = Q. By Corollary C3, there exists a minimal prime q ⊆ Q0

such that, if we write R̂q for R̂/q, Q0/q ∈ Ass(t−nR̂q). Now, R̂q is a finitely generated algebra over the

complete local domain R̂/(q ∩ R̂). Since R̂/(q ∩ R̂) satisfies the dimension formula, any finitely generated

algebra over it satisfies the dimension formula. Thus, R̂q satisfies the dimension formula. Therefore, by
Proposition L3, height(Q0/q) = 1.

It follows that Q0 is minimal over t−1R̂ + q. Thus, by Proposition K3, there exists an n ≥ 1 such

that Q0 ∈ Ass (R̂/L), for all L between t−nR̂ and t−nR̂. Thus, if we take L = (t−nR)R̂, we have

Q0 ∈ Ass (R̂/(t−nR)R̂). By faithful flatness P0 := Q0 ∩ R be longs to Ass (R/t−nR) ⊆ A∗(t−1R). By
Proposition I3, P0 ∩R ∈ A∗(I). Since P = P0 ∩R, the proof is complete. □
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The proof of the following corollary has a similar strategy to that of the previous theorem. However, we
will use the theorem itself in the proof of the corollary. We will also use the following notation. If S is a ring
and q ⊆ S, Sq will denote S/q. If J ⊆ S is an ideal, we will use Jq to denote the image of J in S/q.

Corollary N3. Let I ⊆ R be an ideal. For a prime ideal P ⊆ R, P ∈ A∗(I) if and only if there exists a
minimal prime q ⊆ R with Pq ∈ A∗(Iq).

Proof. The forward direction follows from Corollary C3. For the reverse direction, suppose Pq ∈ A∗(Iq) for
some minimal prime q ⊆ R. Without loss of generality we may assume R is local at P . By the theorem above,

we may lift Pq to a prime belonging to A∗(IqR̂), since R̂q is the completion of Rq. Since P is the maximal

ideal of R, we get PR̂q ∈ A∗(IR̂q). By Corollary C3, there exists a minimal prime q̂ ⊆ R̂ containing qR̂ such

that Pq̂ ∈ A∗(Iq̂). If the conclusion of Corollary I3 holds when R is complete, then we have PR̂ ∈ A∗(IR̂),

and thus P ∈ A∗(I), by Theorem M3. Thus, we may begin again assuming (R,P ) is a complete local ring.

To continue, we need to use the extended Rees ring of Rq with respect to Iq. It is straightforward to check
that this ring is just Rq∗, where q∗ = qR[t, t−1]∩R, where R is the extended Rees ring of R with respect to

I. Thus by Proposition I3 there exists a prime Q′ ∈ A∗(t−1Rq∗) such that Q′ ∩Rq = Pq. But Q
′ = Qq∗, for

a prime Q ⊆ R, and q∗ ⊆ Q. Since Rq∗ satisfies the dimension formula, Qq∗ has height one, by Proposition

L3. Therefore, Q is minimal over t−1R+ q∗. By Proposition K3, Q ∈ A∗(t−1R). Thus, by Proposition I3,
P = Q ∩R belongs to A∗(I), as required. □

We need two more preliminary results before proving Theorem H3. The first will be presented as a remark.

Remark. We mentioned above that a complete local ring is catenary. Thus a complete local domain is a
catenary domain. In such a ring, say (R,m), if I is a height r ideal generated by r elements x1, . . . , xr, then
for all 1 ≤ t < r, the ideal generated by x1, . . . xt has height t. To see this, since the sequence x1, . . . , xr can
be completed to a system of parameters for R, dimR/(x1, . . . , xt)R = d − t, where d := dim(R). Let Q be
a prime minimal over (x1, . . . , xt)R and suppose height(Q) < t. Since dim(R/Q) ≤ d − t, it follows that a
saturated chain of primes from (0) to m that passes through Q has length less that d. This contradicts that
R is catenary. Therefore height(Q) ≥ t. By Krull’s principal ideal theorem height(Q) ≤ t. Therefore, Q has
height r, which shows (x1, . . . , xt)R, has height t.

The following Proposition is due to Ratliff.

Proposition O3. Let R be a Noetherian domain satisfying the dimension formula and I ⊆ R an ideal. If
P ∈ A∗(I), then height(P ) ≤ µ(IP ), where µ(IP ) denote the minimal number of elements generating IP .

Proof. We may assume R is local at P . Write I = (a1, . . . , ad)R. Let R denote the extended Rees ring of
R with respect to I. Note that R is generated as an R-algebra by d+ 1 elements. Now, by Proposition I3,
there exists Q ∈ A∗(t−1R) such that Q ∩ R = P . Since R satisfies the dimension formula, R does as well,
so by Proposition L3 height(Q) = 1. We have

height(Q) + tr.degk(P )k(Q) = height(P ) + 1.

Since t−1 ∈ Q, R/Q is generated as an algebra over R/P by no more than d elements. Thus, the transcen-
dence degree of this extension is at most d. Using this in the displayed formula above shows height(P ) ≤ d,
as required. □
We can now prove Theorem H3.

Proof of Theorem H3. Statement (i) follows immediately from Theorem M3. For example, suppose x1, . . . , xr

is an asymptotic sequence. If they do not remain an asymptotic sequence in R̂, then for some j ≤ r, there

exists Q ∈ A∗((x1, . . . , xj−1)R̂) with xj ∈ Q. By Theorem M3, P = Q ∩ R belongs to A∗((x1, . . . , xj−1)R).
Since xj ∈ P , this is a contradiction. The converse is similar.

The proof of (ii) in Theorem H3 is similar to part (i), only one uses Corollary N3. Suppose x1, . . . , xr is an
asymptotic sequence. Let q ⊆ R be a minimal prime, and maintain the notation from Corollary N3. If the
xi do not remain an asymptotic sequence in Rq, then for some j ≤ r, there exists Qq ∈ A∗((x1, . . . , xj−1)Rq)
with the image of xj in Rq belonging to Qq. Here Q ⊆ R is a prime in R containing q. By Corollary N3, Q

belongs to A∗((x1, . . . , xj−1)R). Since xj ∈ Q, this is a contradiction. The converse is similar.
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For (iii), we first note that by parts (i) and (ii), the given xi form an asymptotic sequence if and only if their

images in R̂z form an asymptotic sequence, for all minimal primes z ⊆ R̂. Thus, we must prove that if R is a
complete local domain, then x1, . . . , xr form an asymptotic sequence if and only if height(x1, . . . , xr)R = r,
for all i. For this, suppose x1, . . . , xr is an asymptotic sequence. Since each xi is chosen to avoid the
primes in A∗((xi, . . . , xi−1)R), each xi avoids the primes minimal over (x1, . . . , xi−1)R. Therefore the ideals
(x1, . . . , xi)R all have height i. Conversely, suppose x1, . . . , xr generate an ideal having height r. Then, by
the remark above, the ideal generated by each x1, . . . xt has height t, for all 1 ≤ t < r. Suppose x1, . . . , xr

do not form an asymptotic sequence. Then for some j, xj ∈ P , for some P ∈ A∗((x1, . . . , xj−1)R). By
Proposition O3, height(P ) ≤ j − 1. On the other hand, (x1, . . . , xj−1)R ⊆ P , so height(P ) ≥ j − 1, and
therefore height(P ) = j − 1. Since xj ∈ P , this contradicts the assumption on the xi. Thus, x1, . . . , xr form
an asymptotic sequence.

Part (iv) Follows immediately from part (iii).

For part (v) we use the obvious terminology: We say that x1, . . . , xs form a maximal asymptotic sequence
if they form an asymptotic sequence and there does not exist y ∈ R such that x1, . . . , xs, y is an asymptotic
sequence. The second condition is equivalent to requiring m ∈ A∗((x1, . . . , xs)R). Set δ(R) to be the

minimum of dim(R̂/z), taken over all minimal primes z ⊆ R̂. By part (iii), the length of any asymptotic
sequence is less than or equal to δ(R), including the length of a maximal asymptotic sequence. Now suppose
x1, . . . , xs is a maximal asymptotic sequence. Then m ∈ A∗((x1, . . . , xs)R). By parts (i) and (ii) above, there

exists a minimal prime z ⊆ R̂ with mR̂z ∈ A∗((x1, . . . , xs)R̂z). By Proposition O3, dim(Rz) ≤ s. Thus,
δ(R) ≤ s, which shows that all maximal asymptotic sequences in R have length δ(R). □
We can now state and prove the characterization of quasi-unmixed local rings.

Theorem P3. Let (R,m) be a local ring. The following statements are equivalent.

(i) R is quasi-unmixed.
(ii) Every system of parameters forms an asymptotic sequence.
(iii) Some system of parameters forms an asymptotic sequence.

Proof. We let δ(R) have the same meaning as above. Set d := dim(R). If R is quasi-unmixed, then δ(R) = d.
Let x1, . . . , xd be a system of parameters and let I denote the ideal they generate. Then I is m-primary.

It follows that the image of I in each R̂z is mR̂z-primary for all minimal primes z ⊆ R̂. Each R̂z has

dimension d, therefore the images of x1, . . . , xd in each R̂z form a system of parameters and thus generate
an ideal of height d. By Theorem H3, x1, . . . , xd is an asymptotic sequence. So, (i) implies (ii). Clearly (ii)
implies (iii). Finally, if some system of parameters forms an asymptotic sequence, this is clearly a maximal
asymptotic sequence. The length of such equals δ(R) by Theorem H3. Thus δ(R) = dim(R), and therefore
R is quasi-unmixed. □
As a corollary, we can prove one component of Ratliff’s Theorem.

Corollary Q3. Let (R,m) be a local domain. If R satisfies the dimension formula, then R is quasi-unmixed.

Proof. By the previous theorem it suffices to show that R has a system of parameters forming an asymptotic
sequence. Suppose x1, . . . , xr is a maximal asymptotic sequence. Then, m ∈ A∗(x1, . . . , xr)R. On the other
hand, by Proposition O3, height(m) ≤ r. Since r ≤ height(m), we must have r = height(m) = dim(R). This
implies that x1, . . . , xr is a system of parameters, and thus R is quasi-unmixed. □

We now want to work directly towards the other parts of Ratliff’s theorem. We start with two elementary
observations, one each concerning the dimension formula and the catenary property.

Observations 1. For Noetherian domains A ⊆ B such that B is a finitely generated A-algebra, if A satisfies
the dimension formula, then B satisfies the dimension formula. To see this, let C be a finitely generated B
algebra. Then C is also a finitely generated A algebra. Let Q ⊆ C be a prime ideal and set P := Q∩B and
P0 := Q ∩A. Then since A satisfies the dimension formula:

height(Q) + tr.degk(P0)k(Q) = height(P0) + tr.degAC,

and
height(P ) + tr.degk(P0)k(P ) = height(P0) + tr.degAB.
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Solving each equation for height(P0 and setting them equal to each other gives:

height(Q) + tr.degk(P0)k(Q)− tr.degAC = height(P ) + tr.degk(P0)k(P )− tr.degAB.

Rewriting, we get:

height(Q) + tr.degk(P0)k(Q)− tr.degk(P0)k(P ) = height(P ) + tr.degAC − tr.degAB.

Additivity of transcendence degree gives:

height(Q) + tr.degk(P )k(Q) = height(P ) + tr.degBC,

which is what we want.

Observation 2. A Noetherian ring S is catenary if and only if for every pair of prime ideals P ⊆ Q,
height(Q) = height(P )+height(Q/P ). To see this, suppose the height condition holds. Let P ⊆ Q be prime
ideals. To see that all saturated chains of primes between P and Q have the same length, we may mod out
P and localize at Q. Note that these operations preserve the height condition. Thus, we have to show that
if the height condition holds, all maximal chains of primes in a local domain (R,m) have the same length,
namely, dim(R). Let (0) ⊊ Q1 ⊊ · · · ⊊ Qs = m be a maximal chain of length s. Clearly height(Q1) = 1.
By the height condition height(Q2) = height(Q2/Q1) + height(Q1) = 1 + 1 = 2, since, by assumption, there
are no primes between Q1 and Q2. Continuing in this fashion, we see height(Qi) = i, for all i. Thus,
s = height(Qs) = height(m) = dim(R), which is what we wanted to prove.

We can now state and prove a second implication in Ratliff’s Theorem.

Proposition R3. Let R be a universally catenary Noetherian domain. Then R satisfies the dimension
formula.

Proof. By the observation above, we just have to prove the following statement. If T is a Noetherian domain,
and T = R[x], for some x ∈ T , then the dimension formula holds between R and T . If x is algebraically
independent over R, then we have verified the dimension formula in this case in Remark (iii) following the
definition of the dimension formula. Suppose x is algebraic over R. Let A denote the polynomial ring in
one variable over R set K to be the kernel of the natural homomorphism from A to T . Take a prime ideal
Q ⊆ T and set P := Q ∩R. Since tr.degRT = 0, we must show

height(Q) + tr.degk(P )k(Q) = height(P ).

Let Q0 denote the preimage of Q in A, so that Q = Q0/K. Since A is catenary,

height(Q0) = height(Q0/K) + height(K) = height(Q) + 1. (∗)
Since the dimension formula holds between A and R we have

height(Q0) + tr.degk(P )k(Q0) = height(P ) + tr.degRA = height(P ) + 1.

Using (*) in this last equation we have

height(Q) + 1 + tr.degk(P )k(Q0) = height(P ) + 1. (∗∗)

But A/Q0 = T/Q, so tr.degk(P )k(Q0) = tr.degk(P )k(Q). Substituting this into (**) and cancelling 1 yields

height(Q) + tr.degk(P )k(Q) = height(P ), which is what we want. □
Here is a result of independent interest that plays a key role in our analysis.

Proposition S3. Let S be a a Cohen-Macaulay ring. Then S is catenary.

Proof. We just have to check the height condition in the observation above. Let P ⊆ Q be primes. We may
assume that S is local at Q. Suppose P has height h and set d =: dim(S). Take x = x1, . . . , xh a maximal
regular sequence from P . Then

dim(S)− height(P ) = d− h = depth(S/(x)) ≤ dim(S/P ),

the latter inequality holds since P is an associated prime of the S-module S/(x). On the other hand,
dim(S/P ) + height(P ) ≤ dim(S) always holds in a local ring, and thus, dim(S) = height(P ) + dim(S/P ),
which is what we want. □

We have used the following proposition a few times already. Time now for its proof.
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Proposition T3. Let (R,m) be a complete local domain. Then R is universally catenary and satisfies the
dimension formula.

Proof. We use the fact that a homomorphic image of a catenary ring is catenary. This follows immediately
from the definition and standard facts about primes in homomorphic images. To see that R is universally
catenary, it suffices to show that a polynomial ring in finitely many variables over R is catenary. By Cohen’s
Structure Theorem, R is the homomorphic image of a regular local ring S. Hence any polynomial ring B over
R is a homomorphic image of a polynomial ring A over S. Since S is Cohen-Macaulay, A is Cohen-Macaulay,
and therefore catenary. Thus, B is catenary, which shows R is universally catenary.

The second statement is now immediate from Proposition R3, □
Remark. Since the catenary property does not require the ring in question to be an integral domain, the
proof above shows that a complete local ring is catenary.

We are closing in on the last step in Ratliff’s Theorem, namely that a quasi-unmixed local domain is
universally catenary. The proof of the following Proposition is greatly facilitated by the use of asymptotic
sequences.

Proposition U3. Let (R,m) be a quasi-unmixed local ring. Leet P ⊆ R be a prime ideal.

(i) dim(R/P ) + height(P ) = dim(R).
(ii) R/P is quasi-unmixed.
(iii) RP is quasi-unmixed.
(iv) R is catenary.

Proof. Let x1, . . . , xr be an asymptotic sequence of maximal length from P . Then, there exists P0 ⊇ P with

P0 ∈ A∗((x1, . . . , xr)R). By Theorem M3, there exists Q ⊆ R̂ with Q ∈ A∗((x1, . . . , xr)R̂) with Q∩R = P0.

Moreover, there exists z ⊆ R̂, a minimal prime, so that Qz ∈ A∗((x1, . . . , xr)R̂z). On the one hand, by
Proposition O3, height(Qz) ≤ r, since Rz satisfies the dimension formula. On the other hand, by Theorem
H3 (iii), height(Qz) ≥ r. Thus, height(Q)z = r. Since R is catenary,

r = height(Qz) = dim(R̂/z)− dim(R̂/Q) = dim(R̂)− dim(R̂/Q),

since R is quasi-unmixed. Therefore,

dim(R/P ) = dim(R̂/P R̂) ≥ dim(R̂/Q) = dim(R̂)− r ≥ dim(R)− height(P ).

Thus dim(R) + height(P ) ≥ dim(R). Since dim(R/P ) + height(P ) ≤ dim(R) always holds, (i) follows.

Moreover, this shows r = height(P ) and dim(R̂/Q) = dim(R/P ). In addition, since height(P0) ≤ r, by
Proposition O3, P0 = P .

For (ii) Let P and x1, . . . , xr ∈ P be as in (i). Then P is minimal over (x1, . . . , xr)R. Now assume Q is

minimal over PR̂. Then Q is minimal over (x1, . . . , xr)R̂ and thus belongs to A∗((x1, . . . , xr)R̂). By what

we have shown in (i), it follows that dim(R̂/Q) = dim(R)− r = dim(R/P ), so R/P is quasi-unmixed.

Now, since r = height(P ), upon localizing R at P , x1, . . . , xr becomes an asymptotic sequence of length
dim(RP ), so RP is quasi-unmixed by Theorem P3. This gives (ii).

Finally, suppose R is quasi-unmixed. Take P ⊆ Q primes ideals. We have to check the height condition in
Observation 2 above. We may localize R at Q. But then RQ is quasi-unmixed by (iii) and by part (i), the
the required height condition holds. □

Our last step requires us to show that if R is a quasi-umixed local ring and T is a polynomial ring in
finitely many variables over R, then T is locally quasi-unmixed. We start with a lemma.

Lemma V3. Let S be a Noetherian ring, J ⊆ S an ideal and R[x] the polynomial ring in one variable over

R. Then J [x] = J [x].

Proof. Write R for the extended Rees algebra of R with respect to J and note that R[x] is the extended

Rees algebra of R[x] with respect to J [x]. Suppose u(x) = unx
n + un−1x

n−1 + · · ·+ u0 belongs to J [x]. By

Lemma F3, u(x) ∈ t−1R[x]. Thus, u(x)
t−1 is integral over R[x]. Therefore, each ui

t−1 is integral over R for each

i, and thus ui ∈ t−1R, for each i. By Lemma F3, ui ∈ J for all i, and hence, u(x) ∈ J [x], as required. □
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Corollary W3. Let R[x] be the polynomial ring in one variable over R. If x1, . . . , xr is an asymptotic
sequence in R, then x1, . . . , xr is an asymptotic sequence in R[x].

Proof. For any ideal I ⊆ R, Q ∈ Ass(R[x]/I[x]) if and only if there exists P ∈ Ass(R/I), with Q = P [x].
Thus, in light of the previous lemma, for any ideal J ⊆ R, Q ∈ A∗(J [x]) if and only if Q = P , for some
P ∈ A∗(J). The corollary now follows from the definition of asymptotic sequence. □
Theorem X3. Let (R,m) be a quasi-unmixed local ring and T := R[x1, . . . , xn] be the polynomial ring in n
variables over R. Then for any prime ideal Q ⊆ T , TQ is quasi-unmixed.

Proof. We induct on n. Suppose n = 1 and Q ⊆ T . Write P := Q ∩ R. Then TP is the polynomial ring
in one variable over RP and (TP )Q = TQ. By Proposition U3, RP is quasi-unmixed. Thus, we may begin
again assuming Q ∩ R = m. Since R is quasi-unmixed, by Theorem P3, every system of parameters forms
an asymptotic sequence. Let x1, . . . , xd ∈ R be a system of parameters, where d := dim(R). Then: (i) By
Corollary W3, x1, . . . , xd remain an asymptotic sequence in R[x] and (ii) A∗((x1, . . . , xd)R) = m. Moreover,
the proof of Corollary W3 shows A∗((x1, . . . , xd)[x]) = m[x].

Now, since Q ∩ R = m, we have two cases. If Q = m[x], then dim(TQ) = d, and x1, . . . , xd ∈ Q is a
system of parameters in TQ forming an asymptotic sequence. Thus, by Theorem P3, TQ is quasi-unmixed.
If Q ̸= m[x], then Q = (m, f(x))T , where f(x) is a monic polynomial which is irreducible over R/m. Thus
f(x) ̸∈ m[x] = A∗((x1, . . . , xd)[x]). Therefore, x1, . . . , xd, f(x) form an asymptotic sequence in T , and also in
TQ. Since dim(TQ) = d+1, these elements are also a system of parameters in TQ. Thus, TQ is quasi-unmixed,
by Theorem P3.

Now suppose n > 1. Let Q ⊆ T be a prime ideal and set P := Q ∩ S, where S = R[x1, . . . , xn−1]. By
induction, SP is quasi-unmixed. Since TP is the polynomial ring in one variable over SP , the n = 1 case
gives that (TP )Q = TQ is quasi-unmixed, and the proof is complete. □
Here is the last component of Ratliff’s Theorem.

Corollary Y3. Let (R,m) be a quasi-unmixed local ring. Then R is universally catenary.

Proof. It is enough to show that if T is a polynomial ring in finitely many variables over R, then T is
catenary. For this, it suffices to show that TQ is catenary for every prime Q ⊆ T . By Theorem X3, TQ is
quasi-unmixed and by Proposition U3, TQ is catenary. □

For the sake of completeness, we put things all together.

Theorem (Ratliff). Let (R,m) be a local integral domain. The following statements are equivalent.

(i) R is quasi-unmixed.
(ii) R is universally catenary.
(iii) R satisfies the dimension formula.

Proof (i) implies (ii) by Corollary Y3. (ii) implies (iii) by Proposition R3. (iii) implies (i) by Corollary
Q3. □

Here are two applications of the main results of this chapter.

Corollary Z3. Let (R,m) be a quasi-unmixed local ring. Then:

(i) For any finitely generated R-algebra S and primes q ⊆ Q ⊆ S, (S/q)Q is quasi-unmixed.
(ii) R[[x]], the formal power series ring over R, is quasi-unmixed.

Proof. There are a couple of ways to see (i), given everything we have done. For example, by Ratliff’s
theorem, R is universally catenary, so S is universally catenary, and hence (S/q)Q is universally catenary,
and therefore quasi-unmixed. Alternately, one can use the fact that if R is quasi-unmixed, then so is R/P
for any prime P ⊆ R.

For (ii) one follows the ideas in the proof of Theorem X3 to show that if a1, . . . , ad is a system of parameters
in R forming an asymptotic sequence, then a1, . . . , ad, x is a system of parameters forming an asymptotic
sequence in R[[x]]. □

We close this section with an amusing observation about height one primes in the integral closure of a
local domain.
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Observation. Let (R,m) be a local domain. Then there are only finitely many height one primes Q ⊆ R′

such that height(Q ∩R) > 1.

Proof. Suppose {Qn}n is an infinite set of height one primes in R′ with height(Qn ∩ R) > 1, for all n. For
each Qi, we can take a non-zero element ai ∈ Qi. By Proposition D3, Qi ∈ A∗((aiR)). By Theorem H3,

Qi lifts to a prime Pi ∈ A∗((aiR̂)). Each of these in turn have the property that (Pi)z ∈ A∗((aiR̂z)), for

some minimal primes z ∈ R̂. Proposition L3 gives height(Pi/z) = 1. We are now in the following situation:

we have infinitely many prime Pi ⊆ R̂ with height greater than one (since each Qi has height greater than
one), and each Pi has height one modulo some minimal prime. This cannot happen. Otherwise: since there

are finitely many minimal primes in R̂, there must exist two minimal primes z1, z2 and infinitely many Pj

such that height(Pj/z1) > 1 and height(Pj/z2) = 1, for all j. Take b ∈ z1\z2. Then the non-zero principal

ideal bR̂z2 is contained in infinitely many height one primes, which is a contradiction, since an ideal in a
Noetherian ring has only finitely many minimal primes. □

4. Fibers of Ring Maps and the Definition of an Excellent Local Ring

In this section we present a few definitions and properties of the fiber of a ring map as they relate to the
definition of an excellent local ring. We do just enough to give the flavor of how things proceed when trying
to prove basic properties about the remaining ingredients in the definition of an excellent local rings. Many
of the important results are quite technical and require the development of a number of auxiliary ideas, so
that we will not have time to go very far in this direction. We begin with some definitions. All rings are
assumed to be Noetherian, unless stated otherwise.

Definitions. Let φ : R → S be a ring homomorphism. Tensor products are taken over R.

(i) For p ⊆ R a prime ideal, the fiber of φ over p is the k(p)-algebra k(p) ⊗ S. Note that since k(p) is
just the ring RU/pU where U = R\p, the fiber over p is just SU/pSU .

(ii) When R is local and S = R̂, the fibers of φ are called the formal fibers of R.
(iii) If R is local with residue field k, k ⊗ S is the closed fiber of the map φ.
(iv) If R is an integral domain, and p = (0), so that k(p) = K, the quotient field of R, then K ⊗ S is

called the generic fiber of φ.

Remark. The description of k(p)⊗ S in (i) shows that the prime ideals in the fiber of φ over p correspond
to the prime ideals in S contracting to p. In fact, as topological spaces, one can show that Spec(k(p) ⊗ S)
is homeomorphic to the set of primes P ∈ Spec(S) with P ∩R = p.

Examples. (i) Suppose R is a Noetherian ring and S = R[x1, . . . , xn] is the polynomial ring in n variables
over R. Take p ⊆ R any prime ideal. Then the fiber of the inclusion map R ⊆ S is just k(p)[x1, . . . , xn].
Thus, the fibers of this map look essentially the same, except the coefficient fields k(p) can differ. However,
the dimension of each fiber is the same, namely n. S is certainly faithfully flat over R, but this alone is not
enough to insure that the fibers of the inclusion map all have the same dimension.

(ii) Let k be a field, and R = Q[y, z] be the polynomial ring in two variables over Q. Then the formal power
series ringR[[x]] is faithfully flat overR. We now show that the fibers of the inclusion mapR ⊆ R[[x]] can have
different dimensions. We need to use the following fact: There exist two power series f(x), g(x) ∈ Q[[x]] that
are algebraically independent over Q. In fact, the quotient field Q((x)) of Q[[x]] has infinite transcendence
degree over Q. To see this, suppose the transcendence degree of Q((x)) over Q were finite. Then we could
find f1, . . . , fd ∈ Q((x)) such that Q((x)) is algebraic over K := Q(f1, . . . , fd). But K is a countable field
and since an algebraic extension of a countable field is countable, that would imply that Q((x)) is countable.
But Q[[x]] is clearly uncountable. Thus, Q((x)) has infinite (uncountable!) transcendence degree over Q, so
we may choose f(x), g(x) as above.

Now define a ring homomorphism α : R[[x]] → Q[[x]] by sending sending Q to itself, y to f(x), z to g(x)
and x to itself. Note that this ring map exploits the fact that R is isomorphic to Q[f(x), g(x)]. Let P be
the kernel of α. Then y − f(x) and z − g(x) ∈ P . This forces P to have height 2. But P ∩ R = (0), which
shows that the generic fiber of the inclusion R ⊆ R[[x]] has dimension two. On the other hand, if we set
m = (y, z)R, then R[[x]]/mR[[x]] = Q[[x]] is one dimensional, so the fiber over m has dimension one. □
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We begin with the following proposition, which gives some information about fibers of a ring homomor-
phism.

Proposition A4. Let φ : R → S be a ring homomorphism. For P ⊆ S, set p := P ∩ S. Then

height(P ) ≤ height(p) + dim(k(p)⊗ S).

Equality holds if the going down property holds between R and S.

Proof. By localizing at P , R be comes local at p, and neither the heights or dimensions in question change.
So we may assume that R is local at p and S is local at P . Set d := dim(R) and t := dim(S/pS). Let
x1, . . . , xd ∈ R be a system of parameters and y1, . . . , yt ∈ S be such that their images in S/pS form a
system of parameters. Then P c ⊆ yS + pS and pd ⊆ xR, for some c, d ≥ 1. Then P c+d ⊆ (x + y)S. This
shows dim(S) ≤ d+ t, which gives the first statement.

Now suppose the going down property holds between R and S. Let P0 ⊊ P1 ⊊ · · · ⊊ Pt = P be a
saturated chain of primes containing pS. Note P0 ∩R = p. Now let p0 ⊊ · · · ⊊ pd = p be a saturated chain
in R. Then, by the going down property, in S, there is a chain of primes P0 = Qd ⊋ · · · ⊋ Q0 with Qi = pi,
for all i. This gives a chain of primes of length d+ t in S. Thus, dim(S) = d+ t, which is what we want. □
Proposition B4. Let φ : R → S be a ring homomorphism so that S is faithfully flat over R. Then:

(i) φ is injective.
(ii) The going down and lying over properties hold between R and S. In particular, equality holds in

Proposition A4.
(iii) height(I) = height(IS), for all ideals I ⊆ R.

Proof. For (i) suppose a ∈ R is non-zero. We have an exact sequence 0 → aR → R. If we tensor with S (via
φ), the sequence 0 → (aR)⊗ S → R⊗ S = S stays exact, by the flatness of S over R. The image of a⊗ 1S
under this map is just φ(a). If φ(a) = 0, then (aR)⊗ S = 0, which contradicts the faithfully flat property.

For (ii), let p ⊆ R be a prime ideal. Then the fiber k(p)⊗S is non-zero. Thus, Spec(k(p)⊗S) is non-empty,
so by our comments above, there exists a prime P ⊆ S with P ∩ R = p. In other words, the lying over
property holds. Now suppose P2 is a prime ideal in S, and set p2 := P2 ∩ R and suppose we have a prime
p1 ⊊ p2. Localizing at P2 preserves flatness (by transitivity of flatness), so we may assume S is local at P2.
Since p2 is the only maximal ideal of R and p2S ̸= S, the extension is also faithfully flat. By lying over,
there is a prime P1 ⊆ S with P1∩R = p1. Since S is local at P2, P1 ⊆ P2, so the going down property holds.

For part (iii), let p ⊆ R be a prime ideal and take P ⊆ S a prime minimal over pS. Again, we may localize
at P and assume that S is local at P and faithfully flat over R. By part (ii), the going down property holds,
so by Proposition A,

height(P ) = height(p) + dim(k(p)⊗ S) = height(p) + dim(S/pS) = height(p) + 0 = height(p).

This argument shows height(I) = height(IS). Indeed, if p is minimal over I having the same height as
I, then the above shows height(IS) ≤ height(I). On the other hand, starting with P minimal over IS,
P is minimal over pS, for p = P ∩ S, so the argument shows height(IS) ≤ height(I), and therefore,
height(I) = height(IS). □

Here is a proposition that sheds some light on the dimension of fibers. Note that, in general, the going up
property does not holds between R and a polynomial ring or a power series over R. Part (ii) of the example
above shows that the going up property fails for power series rings, and that part (i) of the proposition
below can fail in a faithfully flat extension, while if R is a DVR with uniformizing parameter π, going up
fails for the extension R ⊆ R[x], even though the fibers all have the same dimension. To see this, note
that (πx − 1)R[x] is a maximal ideal in the polynomial ring contracting back to zero. If we take the chain
(0) ⊆ (π) we cannot lift it to a chain in R[x] starting with (px− 1), since the latter is a maximal ideal.

Proposition C4. Let φ : R → S be a ring homorphism between Noetherian rings. Let q ⊆ p ⊆ R be prime
ideals.

(i) If the going up holds, then dim(k(q)⊗ S) ≤ dim(k(p)⊗ S).
(ii) If going down holds, dim(k(p)⊗ S) ≤ dim(k(q)⊗ S).
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Proof. For (i), let r := dim(k(q) ⊗ S). Then there exists a chain of distinct primes Q0 ⊆ · · · ⊆ Qr in S
such that for each i, Qi ∩ R = q. Suppose s := height(p/q). Then in R, there exists a chain of distinct
primes q = p0 ⊆ · · · ⊆ ps = p. Since p0 = q by the going up property, we can lift this chain in R to a chain
to Qr ⊆ · · · ⊆ Qr+s, where each Qr+j ∩ R = pj . Applying Proposition B4 to the induced homomorphism
R/q → S/qS. we have:

r + s ≤ height(Qr+s/qS) ≤ height(p/q) + dim(k(p/q)⊗ S/qS),

so r ≤ dim(k(p/q)⊗ S/qS) = dim(k(p)⊗ S), which is what we want.

For (ii), we first note that if the conclusion of part (ii) holds when height(p/q) = 1 then it holds in
general. For if q ⊆ p ⊆ p′ with height(p/q) = 1 = height(p′/p), then the longest chain of primes in S lying
over p′ is less than or equal to the longest chain of primes in S lying over p, which is less than or equal to
the longest chain of primes in S lying over q, by the height one case. Iterating this shows we may assume
height(p/q) = 1.

Set r := dim(k(p) ⊗ S). If r = 0, there is nothing to prove. Now, suppose r > 0 and let P0 ⊆ · · · ⊆ Pr

be a chain of distinct primes in S with Pj ∩ R = p, for all j. We need to find a chain of distinct primes
Q0 ⊆ · · · ⊆ Qr in S, so that Qj ∩R = q, for all j. For this we will use the following fact: If T is a Noetherian
domain and C is a prime ideal in T having height greater than one, then C contains infinitely many height
one primes of T .

Now, by going down, there exist Q0 ⊊ P0 such that Q0 ∩R = q. Take x ∈ p\q. We apply the fact above
to T := S/Q0 and its prime P1/Q0, which has height greater than one. The fact above implies that there
exists a height one prime contained in P1/Q0 not containing the image of x, since the image of x in T is
contained in only finitely many height one primes This prime corresponds to a prime Q1 in S containing Q0,
properly contained in P1. Since x is not in Q1, we can’t have Q1 ∩R = p and since there are no primes in R
between q and p, we must have Q1∩R = q. We can now apply the same process in S/Q1 to the prime P2/Q1

which has height greater one. There is a height one prime in S/Q1 contained in P2/Q1 not containing the
image of x. As before, this corresponds to a prime Q2 properly containing Q1, which satisfies Q2 ∩ R = q.
Continuing in this fashion, we can create a chain of primes of length r in S where each element of the chain
contracts to q. This complete the proof of the proposition. □

The next theorem shows how some familiar properties transfer between a Noetherian ring and a faithfully
extension. The fibers of the ring map play a key role. But we first recall some definitions.

Remark Let R be a Noetherian ring.

(i) R satisfies Serre’s condition Sn if for all P ∈ Spec(R), depth(RP ) ≥ min{n, dim(RP )}. Thus, for example,
a ring is Cohen-Macaulay if and only if it satisfies Sn for all n ≤ dim(R).

(ii) R satisfies Serre’s condition Rn if for all P ∈ Spec(R), with height(P ) ≤ n, RP is a regular local ring. A
ring is regular if and only if it satisfies Rn for all n.

Comments. (i) R is reduced if and only if R satisfies R0 and S1. The conditions clearly hold if R is reduced.
Suppose the conditions R0 and S1 fold. The condition S1 implies that the associated primes of zero have
height zeto, i.e., are the minimal primes of R. The R0 condition implies that Rq is a field for each minimal
prime q ⊆ R, and hence qq = 0, for all minimal primes q. Together these conditions give (0) = q1 ∩ · · · ∩ qs,
where the qi are the minimal primes of R. Therefore, R is reduced.

(ii) Even though we have been considering integrally closed domains, the ring R does not have to be an
integral domain to be integrally closed. We say that R is integrally closed (as a ring) if R equals the integral
closure of R in its total quotient ring. Note however, that if R is integrally closed, then either R is its total
quotient ring or R must be reduced - since if a ∈ R satisfies ac = 0, then for any non-zerodivisor s in R, a

s
is an element in the total quotient ring of R, integral over R, yet not in R. With this in mind, one can show
that R is integrally closed if and only if R satisfies Serre’s conditions R1 and S2. The proof of this is almost
identical to the proof of Proposition A.

We need a special case of a standard result concerning flatness before proving one of our main results.
The general result is known as the local criterion for flatness and does not require that S be flat over R -
and of course, is more difficult to prove.
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Proposition D4. Let φ : (R,m, k) → (S, n, l) be a flat local homomorphism of Noetherian local rings. A

finitely generated S-module M is flat over R if and only if TorR1 (k,M) = 0.

Sketch of Proof. If M is flat, then TorR1 (N,M) = 0 for all R-modules by applying the long exact sequence in
Tor associated to the short exact sequence 0 → K → F → N → 0, where F is a free R-module. Conversely,
if TorR1 (N,M) = 0 for all N , then M is flat since if

0 → A → B → C → 0,

is an exact sequence of R-modules, we have and exact sequence

TorR1 (C,M) → A⊗M → B ⊗M → C ⊗M → 0.

Since TorR1 (C,M) = 0, the map A⊗M → B ⊗M is injective, showing M is flat. We now make a series of
reductions.

Step 1. M is flat over R if TorR1 (N,M) = 0, for all finitely generated R-modules. This follows since

N = lim−→Ni is a direct limit of finitely generated R-modules and lim−→TorR1 (Ni,M) = TorR1 (lim−→Ni,M), so M

is flat over R if TorR1 (N,M) = 0, for all finitely generated R-modules N .

Step 2. Let N be a finitely generated R-module. Then N has a filtration 0 = N0 ⊆ N1 ⊆ · · · ⊆ Nr = N , such
that Ni/Ni−1

∼= R/Pi, where each Pi ⊆ R is a prime ideal. If TorR1 (R/Pi,M) = 0, for all i, then induction on
i together with the long exact Tor sequence applied to the sequences 0 → Ni−1 → Ni → Ni/Ni−1 → 0, shows

that TorR1 (Ni,M) = 0 for all i and hence TorR1 (N,M) = 0. Thus, it suffices to prove TorR1 (R/I,M) = 0, for
all ideals I ⊆ R.

Step 3. Suppose TorR1 (R/J,M) = 0, for all m-primary ideals J ⊆ R. Let I ⊆ R be an ideal. Fix t ≥ 1. Then
J := I + mt is m-primary. Let 0 → K → F → M → 0 be an exact sequence of S-modules with F finitely
generated and free over S. Note that this is also an exact sequence of R-modules, and that since S is flat
over R, F is flat over R. Let us also note that in this situation TorR1 (R/J,M) = (JF ∩K)/JK. To see this,
tensor the short exact sequence 0 → K → F → M → 0 with R/J . We get the long exact sequence in Tor

· · · → TorR1 (R/J, F ) → TorR1 (R/J,M) → K/JK → F/JF → M/JM → 0.

TorR1 (R/J, F ) = 0, since F is flat over R. This shows TorR1 (R/J,M) is isomorphic to the kernel of the map

fromK/JK to F/IF , which is (JF∩K)/JK. The same argument shows that TorR1 (R/I,M) = (IF∩K)/IK.

Now, TorR1 (R/J,M) = 0 implies JF ∩ K = JK. Thus IF ∩ K ⊆ JF ∩ K = (I + mt)K ⊆ (I + nt)K.
Since K is finitely generated and S is local, taking this last intersection over all t shows IF ∩K ⊆ IK, and
hence IF ∩K = IK. Thus, by the comments above we have TorR1 (R/I,M) = 0. It now suffices to shows

TorR1 (R/J,M) = 0 for all m-primary ideals.

Step 4. Let J ⊆ R be m-primary. It suffices to prove TorR1 (N,M) = 0, for all finite length R-modules
N . Proceeding by indeuction on the length, when the length is one, N ∼= k, and our assumption gives
TorR1 (N,M) = 0. When N has length greater than one, we can find an R-module N ′ ⊆ N such that N/N ′

has length one. We then apply the long exact Tor sequence associated to 0 → N ′ → N → N/N ′ → 0 to
complete the proof. □

Here is an important corollary.

Corollary E4. Let φ : (R,m, k) → (S, n.l) be a flat local homomorphism of local rings. Suppose x =
x1, . . . , xr ∈ S have the property that their images in S/mS form a regular sequence. Then x forms a regular
sequence in S and S/(x)S is flat over R.

Proof. It suffices to prove the case r = 1. So, suppose x ∈ S is a non-zerodivisor on S/mS. Take s ∈ S and
suppose sx = 0. Then sx ∈ mS, so s ∈ mS. Let a1, . . . , ad ∈ R be a minimal generating set for m. Then we

have part of a minimal resolution of m over R given by Rc α→ Rd → m → 0, where the matrix α has entries

in m. Tensoring with S, we preserve exactness and have Sc α⊗1→ Sd → mS → 0, where α⊗1 is just the matrix
α. On the other hand, we may write s = s1a1+ · · · sdad, with si ∈ S. Therefore, 0 = (xs1)a1+ · · ·+(xsd)ad.
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It follows that the column vector

xs1
...

xsd

 belongs to the image of α⊗ 1. Thus each xsi ∈ mS. Therefore, by

our assumption on x, each si ∈ mS. Thus, s ∈ m2S. Therefore we can rewrite s as an S linear combination
of of the generators of m2. Repeating the argument with the start of a minimal resolution of m2 shows
s ∈ m3S, and thus by induction, s ∈ mtS for all t. Therefore, s = 0, since S is local and m ⊆ n. Thus, x is
a non-zerodivisor in S.

Now, consider the exact sequence 0 → S
x→ S → S/xS → 0. Tensoring with k we get:

· · · → TorR1 (k, S) → TorR1 (k, S/xS) → S/mS
x→ S/mS → S/(x,m)S → 0.

In the Tor sequence above, multiplication by x is injective, by the assumption on x, and TorR1 (k, S) = 0,

since S is flat over R. Therefore TorR1 (k, S/xS) = 0, and thus S/xS is flat over R, by Theorem D4, as
required. □

Here is one of the main results from this section.

Theorem F4. Let φ : R → S be a faithfully flat ring homomorphism.

(i) If S satisfies Sn, then R satisfies Sn.
(ii) If R satisfies Sn and the fibers k(p)⊗ S satisfy Sn, for all p ∈ Spec(R), then S satisfies Sn.
(iii) Statements (i) and (ii) hold for Serre’s condition Rn.

Proof. For (i), take P ∈ Spec(R) and Q ∈ Spec(S) such that Q is minimal over PS. Then SQ is faithfully
flat over RP and height(Q) = height(P ). Now suppose depth(RP ) = r. If x1, . . . , xr is a maximal regular
sequence in RP , by faithful flatness, these elements remain a regular sequence in SQ. Moreover, there exists
c ∈ R with Pc ∈ (x1, . . . , xr)R and c ̸∈ (x1, . . . , xr)R. Therefore, PSc ∈ (x1, . . . , xr)S and by flatness,
c ̸∈ (x1, . . . , xr)S. Since Qt ⊆ PS for some t, Qt consists of zerodivisors modulo (x1, . . . , xr)SQ. Thus,
depth(SQ) = depth(RP ). Since dim(RP ) = dim(SQ), it follows that if depth(SQ) ≥ min{n,dim(SQ)}, then
depth(RP ) ≥ min{n, dim(RP )}, and thus R satisfies Sn.

For (ii) suppose R and the fibers k(p) ⊗ S satisfy Sn. Let Q ⊆ S be a prime ideal, and set P := Q ∩ R.
We may localize at Q, so that R is a local ring with maximal ideal P and S is local at Q and flatness is
preserved. Note that S/PS is a fiber of our original ring homomorphism. Thus, R and S/P satisfy Sn. Let
r := depth(S/PS). Take y = y1, . . . , yr ∈ S such that their images in S/PS form a regular sequence. By
Corollary E4, the sequence y is a regular sequence in S and S/(y)S is flat over R. Now take x1, . . . , xs ∈ R,
a maximal regular sequence so that s := depth(R). Since S/(y)S is flat over R, and x · (S/(y)S) ̸= S/(y)S,
the sequence x is a regular sequence on S/(y)S. Thus, y, x is a regular sequence in S. Therefore,

depth(S) ≥ depth(R) + depth(S/PS) ≥ min{n, dim(R)}+min{n, dim(S/PS)}.
Consider the sum on the far right. If n is strictly less than one of dim(R) or dim(S/PS), then one of the terms
in the sum equals n, so the sum, and hence depth(S) is greater than min{n, dim(S)}. Suppose both dim(R)
and dim(S/PS) are less than or equal to n. The sum on the right above becomes dim(R) + dim(S/PS) =
dim(S), and thus depth(S) ≥ min {n,dim(S)}, in this case as well. This shows S satisfies Sn.

For part (iii), assume first that S satisfies Rn. Take P ⊆ R a prime ideal with height less than or equal to n.
We must show RP is regular. If we localize S at a prime Q minimal over P , then height(Q) = height(P ) ≤ n.
If we localize at Q, we may assume that φ is a flat, local homomorphism between local rings of the same
dimension and that S is a regular local ring. Let k denote the residue field of R and take the start of a
minimal free resolution · · · → F2 → F1 → R → k → 0 of k as an R-module. It suffices to show Fn = 0, for
some n, for then k will have finite projective dimension over R and thus, R will be a regular local ring. Tensor
this resolution with S. Since S is flat over R, the new sequence · · · → F2 ⊗ S → F1 ⊗ S → S → k ⊗ S → 0
is exact. Moreover, this is a minimal resolution over S. Since S is regular, we must have Fn ⊗ S = 0, for
n ≥ dim(S). In particular, some Fn⊗S = 0, and by faithful flatness, Fn = 0, for some n. Thus, R is regular,
which is what we want.

Now suppose R and the fibers of φ satisfy Rn. As before, we take Q ∈ Spec(S) and localize S at Q, so
that for P = Q ∩ R, R is local at P , and hence regular, and the closed fiber S/PS is regular. Now, P is
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generated by a regular sequence in R, which remains regular in S, by flatness. Moreover, Q/PS is generated
by a regular sequence. Putting these sequences together shows that Q is generated by a regular sequence
which means S is a regular local ring, which is what we want. □
Here are some immediate corollaries.

Corollary G4. Let φ : R → S be a faithfully flat ring homomorphism. Then:

(i) S is Cohen-Macaulay if and only if R is Cohen-Macaulay and the fibers k(p)⊗S are Cohen-Macaulay,
for all p ∈ Spec(R).

(ii) S is regular if and only if R is regular and the fibers k(p)⊗ S are regular, for all p ∈ Spec(R).

Proof. Immediate from Theorem F4. □
Corollary H4. Let (R,m) be a local ring. Then:

(i) R̂ is reduced if and only R is reduced and the formal fibers are reduced. In particular, if R is a local
domain, then R is analytically unramified if and only the formal fibers of R satisfy S1 and R0.

(ii) R̂ is integrally closed if and only if R is integrally closed and the formal fibers of R are integrally

closed. In particular, if R is an integrally closed local domain, then R̂ is an integrally closed domain
if and only if the formal fibers of R satisfy S2 and R1.

Proof. This follows from Theorem F4 and the characterization of th reduced and integrally closed properties
in terms of the Serre conditions Sn and Rn. □

We now state some crucial elements in the definition of an excellent local ring.

Definitions. (i) Let k be a field and A an algebra over k (typically Noetherian). A is said to be geometrically
regular if for every finite field extension k ⊆ k′, k′ ⊗k A is regular.

(ii) The Noetherian ring R is said to be a G-ring if, for every Q ∈ Spec(R), the formal fibers of RQ are
geometrically regular.

As we are not going to prove anything of substance with this properties, a number of comments are in
order.

Comments. (i) If the k-algebra is geometrically regular, it is clearly regular. On the other hand, it turns
out that if A is regular, and k′ is a finite separable extension of k, then k′⊗kA is automatically regular. Thus
if k is a perfect field, any regular k-algebra is geometrically regular. In particular, if k has characteristic
zero, then any regular k-algebra is geometrically regular. Therefore, if R contains a field of characteristic
zero, then R is a G-ring if and only if the formal fibers of RQ are regular, for all Q ∈ Spec(R).

(ii) Suppose (R,m) is a local ring. To say that the formal fibers of R are geometrically regular, means that

for every prime p ∈ Spec(R), the k(p)-algebra k(p)⊗R R̂ is geometrically regular. For non-local R, to be a
G-ring means this property holds for RQ, for all Q ∈ Spec(R).

(iii) Some deep theorems concerning G-rings are:

(a) If (R,m) is a local ring and the formal fibers of R are geometrically regular, then R is a G-ring. In
other words, in the local case, one does not have to check the formal fibers of RQ, for Q ∈ Spec(R).

(b) A complete local ring is a G-ring.
(c) If R is a G-ring, then any finitely generated R-algebra is also a G-ring.

The proofs of these theorems involve a lot of machinery, including modules of differentials and the notions
pertaining to formal smoothness. Most of the details can be found in Matsumura’s first book Commutative
Algebra. As one might suspect, the difficulties mainly lie in the characteristic p > 0 case or the mixed
characteristic case.

(iv) A local ring is excellent (finally!) if it is a universally catenary G-ring. When R is not local, an additional
condition is required for a ring to be excellent, namely that, for any finitely generated R-algebra T , the set
of primes Q ∈ Spec(T ) such that RQ is regular form an open subset of Spect(T ). It turns out that this
condition holds automatically in a local G-ring, though this is also difficult to prove.

(v) An excellent local domain is a Nagata domain. This will follow from the theorem below.
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(vi) A finitely generated algebra over an excellent ring is excellent. The difficulty here lies in the transference
of the G-ring property. Also, homomorphic images and localizations of excellent rings are excellent.

(vi) It follows from what we have done this semester, and the statements above, that a regular local ring
containing a field of characteristic zero is excellent. But we have already seen with Nagata’s example that
even a DVR in characteristic p > 0 need not be excellent. There are examples of regular local rings of mixed
characteristic that are not excellent.

(vii) Standard examples of excellent rings include:

(a) Complete local rings (including fields).
(b) Characteristic zero Dedekind domains, including Z.
(c) Finitely generated algebras over rings in (a), (b), and homomorphic images and localizations of these

algebras.

(vii) A celebrated theorem of E. Kunz states that if R is a Noetherian ring containing a field of characteristic
p, the R is excellent if R is a finite Rp-module. R. Datta and K. Smith recently proved that if R is a domain
containing a field of characteristic p > 0 and its quotient field K satisfies [K : Kp] < ∞, then if R is excellent,
then R is finite over Rp.

We close this section with a theorem concerning Nagata rings and formal fibers. We need two preliminary
results, the first of which we state as a Remark.

Remark. Let A be a ring , S ⊆ A a multiplicatively closed ate. For AS-modules M and N , we have
M ⊗A N = M ⊗AS

N and for A-modules M,N , we have MS ⊗A N = (M ⊗A N)S . We will use these
properties below without comment.

The following lemma extends what we already know in the domain case to the case of reduced local rings.

Lemma I4. Let (R,m) be a reduced Nagata ring with total quotient ring K. Let T be a finite, integral
extension of K such that T is also reduced. Let S denote the integral closure of R in T . Then S is a finite
R-module.

Proof. Note that both K and T are direct sums of fields. Let P ⊆ T be a minimal (and also, maximal)
prime ideal. Then K/(P ∩K) ⊆ T/P is a finite extension of fields. Since R/(P ∩ R) is a Nagata ring, the
integral closure of R/(P ∩ R) in T/P is a finite R/(P ∩ R)-module. Since S/(S ∩ P ) is contained in that
integral closure, S/(P ∩ S) is a finite module over R/(P ∩ R), and hence, also a finite R-module. If we let
P1, . . . Pr denote the minimal primes of T then T = T/P1 ⊕ · · ·⊕T/Pr (by the Chinese remainder theorem),
and we have S ↪→ S/(P1 ∩ S) ⊕ · · · ⊕ S/(Pr ∩ S) ⊆ T . Since each S/(Pi ∩ S) is a finite R-module, S is a
finite R-module, which is what we want. □
Definition. Let k be a field. A k-algebra A is said to be geometrically reduced if k′ ⊗k A is reduced for all
finite extensions k′ of k.

Theorem J4. Let (R,m) be a local domain with quotient field K. Then R is a Nagata ring if and only if its
formal fibers are geometrically reduced. In particular, if R is an excellent local domain, then R is a Nagata
ring.

Proof. Assume that R is a Nagata ring and let p ∈ Spec(R). Set U := R\p. We need to show that

k(p)⊗)RR̂ = (R̂/pR̂)U is geometrically reduced. Note that this is the generic formal fiber of R/p which is a
Nagata ring. Thus, we may replace R/p by R and begin again assuming that R is a Nagata ring and show

that its generic formal fiber K ⊗ R̂ = R̂U is geometrically reduced, where U is the set of non-zero elements
of R.

Let K ′ be a finite field extension of K. We want K ′ ⊗K R̂U to be reduced. Let K̃ denote the total
quotient ring of R̂. We first note that K ⊗K R̂U ↪→ K ′ ⊗K K̃, since K ⊆ K ′ is a faithfully flat extension of
K-modules. Thus, it suffices to show K ′ ⊗K K̃ is reduced. But

K ′ ⊗K K̃ = K ′ ⊗R K̃ ⊆ QR(K ′ ⊗R R̂),

where ‘QR’ denotes quotient ring. Thus, it suffices to show that QR(K ′⊗R R̂), and hence K ′⊗R R̂ is reduced.

Now, let S denote the integral closure of R in K ′. Then S is finite over R, so Ŝ = S ⊗R R̂ and S is also a
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Nagata ring by Comment 2 after the definition of Nagata ring on page 1 above. Thus, Ŝ is reduced, since a

Nagata local domain is analytically unramified (by Theorem H). Therefore QR(Ŝ) is reduced. On the other
hand, we have

K ′ ⊗R R̂ = QR(S)⊗R R̂ ⊆ QR(S ⊗R R̂) = QR(Ŝ),

which shows K ′ ⊗R R̂ is reduced, which is what we want.

Conversely, suppose the formal fibers of R are geometrically reduced. Let P ∈ Spec(R). We must
show R/P satisfies N2. Since the generic formal fiber of R/P is geometrically reduced, as before, we may
replace R/P by R, assume that R is a local domain with quotient field K and that the generic formal fiber

K ⊗R R̂ = R̂U is geometrically reduced, where U is the set of non-zero elements in R. Let K ′ be a finite
field extension of K and S be the integral closure of R in K ′. We must show S is a finite R-module. For

this, it suffices to show that S ⊗R R̂ is a finite R̂-module. Note: we do not yet know S ⊗R R̂ = Ŝ. We have

S ⊗R R̂ ⊆ K ′ ⊗R R̂ ⊆ K ′ ⊗R R̂U = K ′ ⊗K R̂U ,

with the last ring on the right being reduced by assumption. Thus, K ′ ⊗R R̂ is reduced and hence its’s
quotient ring T is reduced.

On the other hand,

R̂ ↪→ R̂U = K ⊗R R̂ ↪→ K ′ ⊗R R̂

which shows that R̂ and its quotient ring K̃ are reduced. Since T is a finite extension of K̃, we are in the

situation of Lemma I4 above. R̂ is a reduced Nagata ring (since a complete local ring is a Nagata ring),

so its integral closure in T is a finite R̂-module. Since S ⊗R R̂ is contained in this ring, S ⊗R R̂ is a finite

R̂-module, which completes the proof. □

5. The Rees multiplicity theorem

In this section, we change direction entirely to focus on multiplicities in local rings, with the goal of
proving the celebrated theorem of Rees, which state the following: Let (R,m) be a quasi-unmixed local ring
and J ⊆ I two m-primary ideals satisfying e(J) = e(I). Then J = I. Here we are writing e(I) for the
multiplicity if I.

Recall that if (R,m) is a local ring with dim(R) = d, and I ⊆ R is an m-primary ideal, one way to define
e(I) is as follows:

e(I) = lim
n→∞

d!

nd
· λ(R/In),

where we use λ(−) to denote the length of a finite length R-module.

We will develop the definition and basic properties of multiplicities below. In order to prove the theorem
of Rees, will will start with some preliminaries on integral closure and then present the standard background
material on the multiplicity of an m-primary ideal in a local ring.

We begin with:

Definition and Comments. An integral domain V with quotient field K is a valuation domain if for
every x ∈ K, either x ∈ V or x−1 ∈ V . Note that a DVR W is easily seen to be a valuation domain, since
every element of W has the form uπn, for u ∈ W a unit and π ∈ W the uniformizing parameter of W . The
following hold for a valuation domain V :

(i) Every finitely generated ideal of V is principal. To see this, it suffices to show any two-generated ideal is
principal, and to see this it suffices to see that if a, b ∈ V are nonzero, then either a ∈ bV or b ∈ aV . But,
by definition, either a

b ∈ V or b
a ∈ V , which gives what we want. NOTE: A valuation domain does not have

be a Noetherian. In fact, any Noetherian valuation domain is a DVR.

(ii) A valuation domain has a unique maximal ideal. To see this, let mV denote the set of non-units of V .
Clearly va ∈ mV for all v ∈ V and a ∈ mV . If a, b ∈ mV then a ∈ bV or b ∈ aV , by the previous item. Say,
a ∈ bV , so a = bv, some v ∈ V . Then a + b = (v + 1)b ∈ mV , so mV is closed under addition. Thus, mV is
an ideal, and is therefore the unique maximal ideal of V .
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(iii) V is integrally closed. To see this, Suppose x ∈ K is integral over V . We have an equation of the form:

xn + v1x
n−1 + · · ·+ vn = 0,

with each vj ∈ V . Since V is a valuation domain, either x or x−1 belongs to V . Suppose x−1 ∈ V . Multiply
the equation above by x−n to get

1 + v1x
−1 + · · ·+ vnx

−n = 0.

Solving for 1 in this equation, we can write 1 = vx−1, for some v ∈ V . This shows x−1 is a unit in V , and
hence its inverse x is in V . Thus, V is integrally closed.

(iv) Every ideal in a valuation domain is integrally closed. To see this, let J ⊆ V be an ideal, and take b ∈ J .
Then b in integral over a finitely generated ideal J0 ⊆ J . By (i) J0 is principal, and by (iii) V is integrally
closed. Thus, J0 = J0, and hence b ∈ J0 ⊆ J .

Our first goal is to characterize the integral closure of powers of an ideal in a Noetherian ring in terms of
discrete valuation rings.

Proposition A5. Let R be a Noetherian domain with quotient field K and J ⊆ R an ideal. Then

J =
⋂
V

(JV ∩R) = (
⋂
V

JV ) ∩R,

where the intersection runs through the DVRs between R and K.

Proof. Let b ∈ J . From (iv) above b ∈ JV , for all V . Conversely, suppose b ̸∈ J . We must find a
DVR between R and K with b ̸∈ JV . Suppose J = (a1, . . . , ad)R, and set S := R[a1

b , . . . ,
ad

b ]. Set
L := (a1

b , . . . ,
ad

b )S. We claim L ̸= S. Suppose L = S. Then there exists a polynomial f(x1, . . . , xd) with
coefficients in R such that f(a1

b , . . . ,
ad

b ) = 1. Note that if xe1
1 · · ·xed

d is a monomial in f(x1, . . . , xd) of degree

n, then bN · (a1

b )
e1 · · · (ad

b )ed ∈ bN−nJn, for all N ≥ n. Thus, if N is the largest degree of a monomial in

f(x1, . . . , xd) and we multiply f(a1

b , . . . ,
ad

b ) = 1 by bN and bring bN to the left hand side of the resulting
equation, we have an equation of integral dependence of b on J , contrary to our choice of b. Thus, L is a
proper ideal of S.

Now, take a prime ideal P ⊆ S containing L. Then by Corollary G2, there exists a DVR V between S
and its quotient field, which is K, such that mV ∩ S = P . Thus, the elements ai

b are non-units in V . If b

were in JV , then for ai with JV = aiV , we would have b ∈ aiV . But then b
ai

∈ V , would be a contradiction.
Therefore b ̸∈ J , and the proof is complete. □
Remark. Let A be an integral domain, not necessarily Noetherian, with quotient field K. Then for any
prime ideal P ⊆ A, using Zorn’s lemma, one can show that there exists a valuation domain V (more than
likely not a DVR) such that mV ∩ A = P . The proof above, together with the comments above, show that
J =

⋂
V (JV ∩A), where the intersections runs through all valuation domains between A and K.

Corollary B5. Let R be a Noetherian domain and I = (a1, . . . , ad)R and ideal. Set Ti = R[a1

ai
, . . . , ad

ai
].

Then, for all n ≥ 1, In =
⋂

1≤i≤d(I
nTi ∩R).

Proof. Clearly In ⊆
⋂

1≤i≤d(I
nTi ∩ R). Conversely, suppose b ∈

⋂
1≤i≤d(I

nTi. ∩ R). Let V be a DVR

between R and its quotient field. If IV = aiV , then aj ∈ aiV , for all j ̸= i. Thus each fraction
aj

ai
∈ V .

Therefore Ti ⊆ V . But now, b ∈ InTi ⊆ InV = InV . Since this holds for all DVRs between R and its
quotient field, b ∈ In, by Proposition A4. □
Theorem C5. Let R be a Noetherian domain with quotient field K and I ⊆ R be an ideal. Then there exist
finitely many DVRs V1, . . . , Vr between R and K such that for any n ≥ 1, In =

⋂r
i=1(I

nVi ∩R).

Proof. Let I := (a1, . . . , ad)R and set Ti := R[a1

ai
, · · · , , ad

ai
], for all 1 ≤ i ≤ d. Take n ≥ 1, fix 1 ≤ i ≤ d and

let T ′
i denote the integral closure of Ti. Then T ′

i is a Krull domain and thus, from our work in Section 2 we
have:

(i) There exist finitely many height one primes Q1, . . . , Qs ⊆ T ′
i containing ani , which are exactly the

height one primes containing ai.
(ii) ani T

′
i = (ani W1 ∩ T ′

i ) ∩ · · · ∩ (aiWs ∩ T ′
i ), where each Wj = (T ′

i )Qj .
(iii) Each Wj is a DVR.
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Since ani Ti = ani T
′
i ∩ Ti, we have

InTi = ani Ti = ani T
′
i ∩ Ti = (ani W1 ∩ · · · ∩ ani Ws) ∩ Ti.

Therefore,
InTi ∩R = (ani W1 ∩ · · · ∩ ani Ws) ∩R = (InW1 ∩R) ∩ · · · ∩ (InWs ∩R),

since InWj = ani Wj , for all j. If we do this for each i, and collect all of the resulting DVRs associated to
each aiT

′
i , and call them V1, . . . , Vr, then the conclusion of the theorem follows from Corollary B5.

Remark. The DVRs V1, . . . Vr constructed in the proof of Theorem C5 are called the Rees valuation rings of
I, and are uniquely determined as the smallest collects of DVRs between R and K for which the conclusion
of Theorem C5 holds.

We next want to improve the conclusion of Theorem C5 in the case that R is a local domain satisfying the
dimension formula and the generators of I form a system of parameters. The next proposition is a special
case of a result to E.D. Davis.

Proposition D5. Let (R,m, k) be a local domain and a1. . . . , ad a system of parameters. Fix 1 ≤ i ≤ d

and set Ti := R[a1

ai
, · · · , , ad

ai
]. Then mTi is a height one prime and the residue classes of a1

ai
, . . . , î, . . . , ad

ai
are

algebraically independent over k, i.e., Ti/mTi is isomorphic to a polynomial ring in d− 1 variables over k.

Proof. It suffices to prove the case i = 1. Set T := T1 and S := R[x2, . . . , xd], the polynomial ring in d − 1
variables over R and let P denote the kernel of the natural ring homomorphism from S to T that takes
each xi to ai

a1
, so P ∩ R = 0. Let L denote the ideal of S generated by a1x2 − a2, . . . , a1xx − ad, so that

L ⊆ P . Let us note the following: If we invert a1, then Sa1
is the polynomial ring in d− 1 variables over Ra1

and Ta1
= Ra1

. The induced ring homomorphism from Sa1
→ Ta1

is now just obtained by evaluating any
g(x2, . . . , xd) ∈ Sa1

at a2

a1
, . . . , ad

a1
∈ Ra1

. The kernel of an evaluation map is alway just the expected kernel,

in this case, L0 = (x2− a2

a1
, . . . , xd− ad

a1
)Sa1

. Now, clearly LSa1
= L0Sa1

, while on the other hand, the kernel

of the induced map is Pa1
. Thus Pa1

= La1
, and hence P = La1

∩ S. In other words, f(x2, . . . , xd) ∈ P if
and only if ac1 · f(x2, . . . , xd) ∈ L, for some c ≥ 1.

So: take f(x2, . . . , xd) ∈ P and let Q ⊆ S be a prime minimal over L. Then ac1 · f(x2, . . . , xd) ∈ L ⊆ Q.
Suppose ac1 ∈ Q. Then a1 ∈ Q and hence a1, . . . , ad ∈ Q. But this is a contradiction, since on the one hand
height(Q) ≤ d− 1, while on the other hand a1, . . . , ad generate an ideal of height d in R, and hence also in
S. Thus, a1 ̸∈ Q, so f(x2, . . . , xd) ∈ Q. Thus, P ⊆ Q, which shows that P is the unique minimal prime of
L. Now, since mS contains L, we have P ⊆ mS Thus mT = mS/P is a prime ideal. In addition, for some
n ≥ 1,

mn ⊆ (a1, . . . , ad)S = (a1, L)S ⊆ (a1, P )S,

which shows mn ⊆ a1T . Thus height(mT ) = 1, and in fact, mT is the unique height one prime in T containing
a1. Finally,

T/mT = (S/P )/(mS/P ) ∼= S/mS ∼= k[x2, . . . , xd],

the polynomial ring in d− 1 variables over k. □
The following proposition due to DK plays a key role in a theorem below concerning multiplicities.

Proposition E5. Let (R,m, k) be a local domain and I = (a1, . . . , ad)R an ideal generated by a system of
parameters. Assume R satisfies the dimension formula. Set S := R[a2

a1
, · · · , ad

a1
]mR[

a2
a1

,··· , ad
a1

]. Let Q1, . . . , Qs

be the height one primes in S′. Then for all n ≥ 1, In = (InV1 ∩R) ∩ · · · ∩ (InVs ∩R), where Vi := (S′)Qi
,

for each i.

Proof. By Theorem C5, we just have to show that V1, . . . , Vs is the complete set of Rees valuation rings of
I. For each 1 ≤ i ≤ d, set Ti := R[a1

ai
, · · · , , ad

ai
], so that S = (T1)mT1

. By Proposition D5, mTi is a height

one prime. Let Ui ⊆ Ti be the multiplicatively closed subset generated by a1

ai
, . . . , ad

ai
. Then

(Ti)Ui
= Ti[(

a1
ai

)−1, . . . , (
ad
ai

)−1] = R[
a1
ai

, . . . ,
ad
ai

,
ai
a1

, . . . ,
ai
ad

].

Let 2 ≤ j ≤ d and i ̸= 1. If j = i, then a1

aj
,
aj

a1
∈ (Ti)Ui

. If j ̸= i,
aj

a1
=

aj

ai
· ai

a1
∈ (Ti)Ui

and a1

aj
= a1

ai
· ai

aj
∈ (Ti)Ui

,

which shows that (T1)U1
⊆ (Ti)Ui

. The same argument shows (Ti)Ui
⊆ (T1)U1

, and thus (Ti)Ui
= (T1)U1

,
for all i. By Proposition D5, Ui ∩ mTi = ∅, for all i, since the images of the elements ai

ai
in Ti/mTi are
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algebraically independent over k. Thus (Ti)mTi = ((Ti)Ui)m(Ti)Ui
for all i, from which we infer (Ti)mTi = S,

for all i.

Now let V be a Rees valuation ring of I. Then for some 1 ≤ i ≤ d, V is obtained by localizing T ′
i at a

height one prime Q containing ai, so that mV = QQ. Thus, by Proposition D3, Q ∩ Ti ∈ A∗(aiTi). Since R
satisfies the dimension formula, Ti also satisfies the dimension formula, by Observation 1 following Corollary
Q3. Thus, by Proposition L3, height(Q) = 1. Since mTi is the only height one prime in Ti containing ai,
mTi = Q ∩ Ti. Thus S = (Ti)mTi

⊆ (T ′
i )Q = V . Since V is integrally closed S′ ⊆ V . Since mV ∩ S = mS,

mV ∩S′ must contract to mS, therefore mV ∩S′ = Qj , for some 1 ≤ j ≤ s. It follows that Vj ⊆ V . However,
there are no rings strictly between a DVR and its quotient field, so we must have Vj = V , which is what we
want. □

Our next Theorem is a special case of one of the main theorems in the theory of reductions of ideals
due to Northcott and Rees. Their famous 1953 paper titled Reductions of ideals in local rings is one of
the most frequently cited papers in commutative algebra. For the theorem below, we will use the Noether
Normalization Theorem, one version of which is the following: Let k be an infinite field and B a finitely
generated, graded k algebra, which is generated over k by homogenous elements of degree one. If dim(B) = r,
then there exist b1, . . . , br ∈ B1, such that b1, . . . , br are algebraically independent over k and B is a finite
module over A := k[b1, . . . , br].

Theorem F5. Let (R,m) be a local ring with infinite residue field k. Then, for any m-primary ideal I ⊆ R,
there exists an ideal J , generated by a system of parameters, such that J = I.

Proof. Let R denote the Rees ring of R with respect to I, so that R := R[It] = R ⊕ It ⊕ I2t2 ⊕ · · · . The
k-algebra B := R/mR is a finitely generated, graded k-algebra generated by homogeneous elements of degree
one over k. Note, that as a graded k-algebra, B = k ⊕ I/mI ⊕ I2/mI2 ⊕ · · · . By Noether’s Normalization
Lemma, there exist b1, . . . , br ∈ B1, such that b1, . . . , br are algebraically independent over k and B is a finite
module over A := k[b1, . . . , br]. Note that each bi = ai, for some ai ∈ I\mI.

We are now in an Artin-Rees like situation. B is a finite, graded module over the graded ring A, and
as such we can take finitely many homogenous elements c1, . . . , cs ∈ B that generate B as an A-module.
If n is the maximum degree of any cj , then it follows that for all t ≥ 0, Bn+t = At · Bn. In particular,
Bn+1 = A1Bn. Interpreting this in terms of R, we have In+1 ⊆ JIn +mIn+1, where J = (a1, . . . , ar)R. We
note two things: (i) In+1 ⊆ JIn, by Nakayama’s lemma and (ii) dim(B) = dim(R). The second of these
follows since (say by Atiyah-MacDonald, Chapter 11), R/IR =

⊕
n≥0 I

n/In+1, the associated graded ring

of R with respect to I, has dimension equal to dim(R). Since mnR ⊆ IR ⊆ mR, it follows that R/IR and
B have the same dimension. Thus, r = d and J is generated by a system of parameters. Since J ⊆ I and
JIn ⊆ In+1, we have JIn = In+1.

We now show J = I. Now let q ⊆ R be a minimal prime ideal. By Lemmma B3, it is enough to show
that the image of I in R/q and the image of J in R/q have the same integral closure. Since the identity
In+1 = JIn also holds modulo q, we may replace R/q by R and assume that R is an integral domain. Let
V be a DVR between R and its quotient field. Then, In+1V = JInV . Since the ideals IV and JV are
principal ideals, we may cancel In from both sides of this equation to get IV = JV . Since this holds for all
DVRs V , we have I = J , by Theorem A5. □

We now begin our discussion of multiplicities. We will prove a standard result about the existence of
Hilbert polynomials associated to graded modules over a graded ring. The following is a key technical
lemma needed for the induction part of the proof of the existence of Hilbert polynomials. For this lemma,
we need the following remark concerning primary decomposition in modules. We will use the fact below that
the zero submodule of M is in intersection of primary submodules, each of which is a graded submodule of
M .

Remark. Let A/ be a Noetherian ring and M a finitely generated A-module. A submodule N ⊆ M is said
to be P-primary, for the prime ideal P ⊆ A if AssA(M/N) = P . Note that if I ⊆ A is an ideal, then this
is saying the same thing as I is P -primary, since then AssA(R/I) is P -primary. Moreover, since a prime
minimal over the annihilator of a finitely generated A-module is an associated primes, if N is P -primary,
then PS · (M/N) = 0, for some S. Further, if M is a finitely generated A-module, then the zero submodule
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of M has a primary decomposition in terms of primary submodules of M . Finally, if A is a graded ring and
M,N are graded modules, then the associated primes of M/N are homogeneous.

Lemma G5. Let A =
⊕

n≥0 An be a finitely generated R-algebra, where A0 = (R,m, k) is a local ring

with infinite residue field. Write M for the homogeneous maximal ideal (m, A+)A. We assume that A is a
standard, graded R-algebra, i.e., A = R[A1]. Let M =

⊕
n≥0 Mn be a finitely generated, graded A-module.

If Ass(M) ̸= M, then there exists f ∈ A1 and c > 0 such that (0 :M f)n = 0, for all n ≥ c. In other words,
elements in M annihilated by f are concentrated in degrees less than c.

Proof. Let (0) = N1 ∩ · · · ∩ Nr ∩ Nr+1 ∩ · · · ∩ N2 be a primary decomposition, where for 1 ≤ i ≤ r,
AssA(M/Ni) = Qi does not contain A+ and for r + 1 ≤ i ≤ s, A+ ⊆ Qi = Ass(M/Ni). We claim there
exists f ∈ A1 such that f ̸∈ Q1 ∪ · · · ∪Qr. Suppose the claim holds. Take c > 0 such that for r+ 1 ≤ i ≤ s,
(M/Ni)n = 0, for n ≥ c. This is possible since each M/Ni is annihilated by a power of A+.

2 Then for n ≥ c,
if b ∈ Mn and fb = 0, then, on the one hand, fb ∈ Ni for all 1 ≤ i ≤ r, which, by the choice of f , implies
b ∈ Ni, all i. On the other hand, by the choice of c, b ∈ Nr+1∩ · · ·∩Ns. Thus b belongs to all of the primary
components of (0), so b = 0.

For the claim, consider the k-vector space V := A1/mA1 and the subspaces Li := ((Qi)1 + mA1)/mA1,
1 ≤ i ≤ r. These are proper subspaces of V , for if say, Li = V , then A1 = (Qi)1 + mA1. Since A is a
standard graded algebra, this implies A+ ⊆ Qi +MA+, which by Nakayama’s lemma (the graded version)
implies A+ ⊆ Qi, a contradiction. Thus, the subspaces Li are proper subspaces of V , and since k is infinite,
there exists f ∈ V \(L1 ∪ · · · ∪ Lr). Thus, f ∈ A1, but f is not in any Qi, as required. □
Definition and comments. One can draw a similar conclusion to Lemma 5G if k is not infinite. One
uses the homogeneous form of prime avoidance. This, together with the definition of the Qj , impliy that
A+ ̸⊆ Q1 ∪ · · · ∪ Qr, and thus, there exists a homogeneous ring element f not in Q1 ∪ · · · ∪ Qr, and the
conclusion of the lemma still holds for this f . However, f may not be homogeneous of degree one. Such
elements are called superficial elements, and if f ∈ Ad, then f is a superficial element of degree d. Thus,
superficial elements of some positive degree exist, but superficial elements of degree one need not always
exist.

Facts about numerical polynomials. A numerical polynomial is a polynomial P (x) ∈ Q such that
P (n) ∈ Z, for all n ∈ Z (or equivalently, all n ∈ N). Note that the polynomial associated to the binomial

coefficient,
(
x+d
x

)
:= 1

d! · (x + d)(x + d − 1) · · · (x + 1) is a numerical polynomial of degree d. A function
f : Z → Z is said to agree with a numerical polynomial for n >> 0 if there exists n0 ∈ N and a numerical
polynomial F (x) such that f(n) = F (n), for all n ≥ n0. We will use the following two facts.

(i) Any numerical polynomial P (x) of degree d can be written uniquely as

P (x) = e0

(
x+ d

d

)
+ e1

(
x+ d− 1

d− 1

)
+ · · ·+ ed

(
x+ 0

0

)
,

with the ej ∈ Z. To see this, first note that since each
(
x+d
d

)
has degree d, these polynomials form a basis

for Q[x] as a vector space over Q. Thus any polynomial in Q[x] can be written uniquely as a Q-linear

combination of the
(
x+d
x

)
. However, if P (x) is a numerical polynomial, then one can show by induction on

the degree of P (x) that the coefficients ej above must be integers. Note also, that if P (n) ∈ N, for n ∈ N,
then e0 ∈ N.

(ii) Suppose f : N → N has the property that f(n+ 1) = f(n) agrees with a numerical polynomial of degree
d for n >> 0. The f(n) agrees with a numerical polynomial of degree d+1 for n >> 0. To see this, suppose
suppose f(n+ 1)− f(n) = P (n), for n >> 0, where

P (x) =

d∑
j=0

ej

(
x+ d− j

d− j

)
.

2To see this, suppose Ae
+ · (M/N) = 0. Then X := M/N is a finitely generated graded module over B := A/Ae

+. Since A

is a standard graded algebra, Bn = 0, for all n ≥ e. Since there exists n0 such that Xn = Bn−n0Xn0 , for all n ≥ n0, Xn = 0,

for n− n0 ≥ e.
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Set

F (x) :=

d∑
j=0

ej

(
x+ d− j

d− j + 1

)
.

Then, for n >> 0,

F (n+ 1)− F (n) =

d∑
j=0

ej{
(
n+ 1 + d− j

d− j + 1

)
−

(
n+ d− j

d− j + 1

)
}

=

d∑
j=0

ej

(
n+ d− j

d− j

)
= f(n+ 1)− f(n).

It follows that (F − f)(n+ 1)− (F − f)(n) = 0, for n >> 0. Thus, (F − f)(n) = c, a constant for n >> 0.
Therefore, f(n) = F (n)−c, for n >> 0, which shows that f(n) agrees with a numerical polynomial of degree
d+ 1 for n >> 0.

We need one more observation before proving the main theorem concerning the existence of Hilbert
polynomials.

Comments on extending the residue field. (i) Let (R,m, k) be local ring with finite residue field k.
Take an indeterminate y and consider the ring the ring R[y]mR[y]. This ring is denoted R(y). Then R(y) is
a faithfully flat local extension of R whose maximal ideal is mR(y) and whose residue field k(y) is infinite.
Let U ⊆ V be two R-modules such that λ(V/U) = 1. Then there is an exact sequence

0 → U → V → k → 0.

If we tensor this exact sequence with R(y), we have

0 → U ⊗R(y) → V ⊗R(y) → k(y) → 0,

where k(y) is the residue field of R(y). Thus, λR(y)(V ⊗R(y)/U ⊗R(y)) = 1. It follows that if C is a finite
length R-module having length c, then C ⊗R(y) is a finite length R(y)-module with length c. In particular,
if J ⊆ R is an m-primary ideal, then since JR(y) = J ⊗R(y), λ(R/J) = λ(R(y)/JR(y)).

(ii) Now suppose A is a standard graded ring, finitely generated as an algebra over A0 = (R,m, k). Then

Ã := A ⊗R R(y) is a standard graded ring, finitely generate as an algebra over R(y) and if M is a finite,

graded A-module, then M̃ := M ⊗R R(y) is a finite, graded Ã-module. It is straightforward to show that

since R(y) is faithfully flat over R, then Ã is faithfully flat over A. In fact, if U = R[y]\mR[y], then Ã can
be identified with A[y]U . Now suppose dim(M) = d. Then dim(A/J) = d, where J is the annihilator of M .
If we take a set of generators x1, . . . , xr of M , then we have an exact sequence

0 → J → A
ϕ→ M ⊕ · · · ⊕M,

where φ(a) = (ax1, . . . , axd), for all a ∈ A. If we tensor this exact sequence with Ã, we have an exact
sequence

0 → J ⊗A Ã → Ã
ϕ⊗1→ M̃ ⊕ · · · ⊕ M̃,

where φ⊗1 takes ã ∈ Ã to ã(xi⊗1) in each component. Since the x0⊗1 generate M̃ , we have J⊗A Ã = JÃ is

the annihilator of M̃ . Now, the fibers over the faithfully flat extension A/J ⊆ Ã/JÃ are just the fibers over

P ⊆ A for the inclusion A ⊆ Ã, for those primes P with J ⊆ P . Since the fibers of the inclusion A ⊆ Ã are
zero dimensional3, it follows from what we have done in the previous section that dim(A?J) = dim(Ã/JÃ).

Hence dim(M) = dim(M̃). Finally, the discussion in (i) above shows that

λR(y)(M̃n) = λR(y)(R(y)⊗R Mn) = λR(Mn),

for all n ≥ 0. This shows that in finding the Hilbert polynomial of a graded module, we may assume that
the degree zero component of the underlying ring has an infinite residue field.

Here is the main theorem concerning Hilbert polynomials of N-graded modules.

3If p ⊆ A is a prime ideal, then the fiber over P in Ã is just k(p)(y).
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Therem H5. Let A =
⊕

n≥0 An be a finitely generated R-algebra, where A0 = (R,m, k) is a local Artinian

ring with infinite residue field. We assume that A is a standard, graded R-algebra, i.e., A = R[A1]. Let
M =

⊕
n≥0 Mn be a finitely generated, graded A-module. Then HM (n) := λR(Mn) < ∞, for all n and

HM (n) agrees with a numerical polynomial PM (x) of degree dim(M)− 1, for n >> 0.

Proof. By the comments above, if need be, we may replace A by R(y) ⊗R A and M by R(y) ⊗R M . This
preserves the lengths and dimensions in question, so we may pass to R(y) and upon changing notation assume
that residue field of R is infinite. To see that λ(Mn) < ∞ for all n, note that M0⊕M1⊕· · ·⊕Mn = M/M≥n+1

is a finite A-module annihilated by An+1
+ . Thus, it is a finite A/An+1

+ -module. This latter ring is finite over
R, which implies that M0 ⊕M1 ⊕ · · · ⊕Mn is a finite R-module. Thus, each Mj is a finite R-module, and
therefore has finite length.

To show the existence of PM (n), we induct on dim(M). If dim(M) = 0, then any prime ideal Q minimal
over the annihilator of M is a maximal ideal. On the other hand, since M is a graded A-module, it associated
primes are graded. Since A0 = R is local, M is the only graded maximal ideal.4 Thus A+ is contained in the
annihilator of M , which implies Mn = 0, for n >> 0. Thus, we may take PM (x) to be the zero polynomial,
which by standard convention has degree -1.

Now suppose dim(M) > 0. Then Ass(M) ̸= M, so by Lemma G5, there exists f ∈ A1 a superficial
element on M . We will assume f has been chosen as in the proof of Lemma G5. Note that in this case,
since R = A0 is zero-dimensional, M is the only prime ideal in A containing A+. Suppose c > 0 satisfies
(0 :M f)n = 0, for all n ≥ c. We have an exact sequence of graded A-modules

M
·f→ M → M/fM → 0,

which induces an exact sequence of R-modules

Mn−1
·f→ Mn → (M/fM)n → 0,

for all n. Our choice of n implies that the sequence

0 → Mn−1
·f→ Mn → (M/fM)n → 0,

is exact for all n ≥ c + 1. It follows that HM (n) −HM (n − 1) = HM/fM (n), for all n ≥ c + 1. Our choice
of f , and the fact that dim(M) > 0, imply that f is not in any prime minimal over the annihilator of M , so
that dim(M/fM) = dim(M)− 1.5 By induction, HM/fM (n) agrees with a numerical polynomial PM/fM (x)
of degree dim(M/fM)− 1 for n >> 0. On the other hand, since HM (n)−HM (n− 1) = HM/fM (n), for all
n ≥ c + 1, by the second remark above concerning numerical polynomials, HM (n) agrees with a numerical
polynomial, say PM (x), for n >> 0 whose degree equals 1+degree(PM/fM (x)). But 1+degree(PM/fM (x)) =
dim(M)− 1, which is what we want. □
Definition. The function HM (n) above is called the Hilbert function of M , while the polynomial Pn(x) is
called the Hilbert polynomial of M .

We now want to apply the theorem above to the associated graded ring of an m-primary ideal. Recall
that the associated graded ring of a Noetherian ring R with respect to an ideal I ⊆ R,

G :=
⊕
n≥0

In/In+1 = R/IR,

where R is the Rees ring of R with respect to I. Note that as an R/I-algebra, G = R/I[I/I2], so that G is
a standard graded, finitely generated R/I-algebra. If I is m-primary, then R/I = G0 is an Artinian ring, so
Theorem H5 applies. We give two versions of the Hilbert polynomial associated to m-primary ideal I.

Corollary I5. Let (R,m, k) be a local ring of dimension d and I ⊆ R an m-primary ideal.

(i) The function H̃I(n) := λR(I
n/In+1) agrees with a numerical polynomial P̃I(x) of degree d − 1, for

n >> 0.

4If J ⊆ A is a proper graded ideal, and a ∈ J , write a = a0 + a1 + · · · as, with each ai ∈ J . Then each ai ∈ J . In particular

a0 ∈ J , and a0 is not a unit so, a0 ∈ m. Moreover, a− a0 ∈ A+, so J ⊆ (m, A+)A = M.
5Note that the primes containing the annihilator of M/fM are the primes containing f and the annihilator of M , which

shows dim(M/fM) = dim(M)− 1.
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(ii) The function HI(n) := λ(R/In+1) agrees with a numerical polynomial PI(x) of degree d, for n >> 0.

Proof. The first statement is immediate from Theorem H5, since dim(G) = d. The second statement follows

from the first, by our discussion of numerical polynomials, since HI(n)−HI(n−1) = P̃I(n), for n >> 0. □
Definition. Maintaining the notation from Corollary I5, it follows from the discussion above on numerical
polynomials, that we can write

PI(x) = e0

(
x+ d

d

)
+ e1

(
x+ d− 1

d− 1

)
+ · · ·+ ed−1,

where each ej ∈ Z and e0 > 0. The integer e0 is called the multiplicity of I and is denoted e(I). Note that

if we write PI(x) in the form q0x
d + q1x

d−1 + · · ·+ qd, with each qj ∈ Q, then q0 = e(I)
(d)! . Thus,

e(I) = lim
n→∞

d!

nd
· λ(R/In+1).

Note that e(I) is also the normalized leading coefficient of P̃I(x), since PI(x)− PI(x− 1) = P̃I(x).

For some of our results below, we will need refine the superficial element argument from above, which we
do in the proposition below.

Definition. Let I ⊆ R be a ideal in the Noetherian ring R. a ∈ I is said to be a superficial element for I if
there exists c > 0 such that (In : a) ∩ Ic = In−1, for n ≥ c.

Proposition J5. Let (R,m, k) be a local ring with infinite residue field and suppose I ⊆ R is an ideal having
height greater than zero. Then:

(i) There exists a ∈ I, a superficial element for I, that is also a minimal generator for I.
(ii) If grade(I) > 0, then there exists a superficial element for I that is both a minimal generator for I

and a non-zerodivisor.
(iii) If a ∈ I is superficial for I, and a non-zerodivisor, then (In : a) = In−1, for n >> 0.

Proof. We will prove parts (i) and (ii) at the same time. Let G denote the associated graded ring of R. By
proof of Lemma G5, if a ∈ I/I2 has the property that its image a in G1 does not belong to any associated
prime of (0) in G that contains G+, then, in the ring G, a is superficial in the sense described there. Suppose
a is such an element (which exists, by Lemma G5). Let c be as in Lemma G5. Then suppose b ∈ (In : a)∩Ic,
with n ≥ c. If b ̸∈ In−1, choose e maximal such that e ≥ c, yet e < n− 1 with b ∈ Ie. Then b ∈ Ge. Now, on
the one hand, a ∈ G1, so a · b ∈ Ge+1. But ab ∈ In and n > e+ 1, so a · b = 0 in G. Since e ≥ c, this means
b = 0, i.e., b ∈ Ie+1, contrary to the choice of e. Thus, in fact, b ∈ In−1, so a is a superficial element for I.

Now let us write G = R/IR, where R is the Rees ring of R with respect to I. Then a primary de-
composition of (0) in G corresponds to a primary decomposition of IR. Let Q1, . . . , Qr be the associated
primes in a primary decomposition of IR that do not contain R+. Let Ji = {a ∈ R | at ∈ Qi}. Note
that by definition, I ̸⊆ Ji, therefore Ji ∩ I is properly contained in I. Write d := dimk(I/mI) and take
J = (a2, . . . , ad)R, where the images of the ai in I/mI are linearly independent. Then the subspaces
(J1 +mI)/mI, . . . , (Jr +mI)/mI, (J +mI)/mI are proper subspaces of the k-vector space I/mI. Take a ∈ I
such that its image in I/mI does not belong to any of these subspaces.

Then, one the one hand, a ̸∈ Ji all i, so at ̸∈ Qi all i. Thus, by our discussion above, a is a superficial
element for I. On the other hand, since the image of a in I/mI does not belong to (J +mI)/mI, the images
of a, a2, . . . , ad in I/mI are linearly independent over k, and thus form a minimal set of generators of I. In
particular, a is a minimal generator of I. This gives (i). If in addition grade(I) > 0, let P1, . . . , Ps denote
the associated primes of R and set Wi := Pi ∩ I, for each i. Then since I ̸⊆ Pi, Wi is properly contained in
I. Thus the subspaces (Wi + mI)/mI are proper subspaces of I/mI and if a is chosen so that its image in
I/mI also avoids these subspaces, then a ̸∈ Pi, for all i, and thus, we have that a is also a non-zerodivisor.

Finally, take a ∈ I as in the statement of (iii). By the Artin-Rees lemma, there exists k > 0 such
that In ∩ (a) ⊆ In−k, for all n ≥ k. Let c be as in (i). For any n ≥ c + k, suppose ra ∈ In. Then
ra ∈ In ∩ (a) ⊆ In−ka. We can write ra = ia, with i ∈ In−k. Then (r − i)a = 0, and thus, r = i, since a is
a non-zerodivisor. Therefore, r ∈ In−k ⊆ Ic, since n ≥ k + c. Therefore r ∈ (In : a) ∩ Ic = In−1, which is
what we want. □
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Applications of Superficial Elements. We assume that (R,m, k) is a local ring of dimension d > 0, and
I ⊆ R is an m-primary ideal.

(i) Suppose a ∈ I is a superficial element and a non-zero divisor. Set R∗ = R/(a). Then e(I) = e(IR∗).
To see this, note that by (iii) in the proposition above, (In : a) = In−1, for n sufficiently large. Thus, the
sequence

0 → R/In−1 ·a→ R/In → R/(In, a)R → 0,

is exact for large n. Since R/(In, a)R = R∗/InR∗, we have

λ(R/In)− λ(R/n−1) = λ(R∗/InR∗),

for n >> 0. Thus, PIR∗(x) = PI(x)−PI(x−1). Now, if f(x) is a polynomial of degree d, then f(x)−f(x−1)
is a polynomial of degree d− 1 whose leading coefficient is d times the leading coefficient of f(x). Thus, the
normalized leading coefficient of PIR∗(n) is e(I), which gives e(IR∗) = e(I).

(ii) This item shows that one can often assume that the ideal I has a superficial element that is a non-
zerodivisor. Suppose depth(R) = 0, so that I does not contain a non-zerodivisor. Let L be the stable value
of the increasing chain of ideals (0 : I) ⊆ (0 : I2) ⊆ · · · . Let’s first note that In ∩ L = 0, for n >> 0.
Suppose L = (0 : Ic). By the Artin-Rees lemma, there exists k such that In ∩L ⊆ In−kL. When n− k ≥ c,
In−1L = 0, which gives what we want. Now, for all n, we have an exact sequence

0 → (In + L)/In → R/In → R̃/InR̃ → 0.

Thus λ(R/In) = λ(R̃/InR̃) + λ((In + L)/In). However (In + L)/In) ∼= L/(In ∩ L) = L, for n >> 0. Thus,
PI(x) = PIR̃(x)+λ(L). Since dim(R) > 0, PI(x) has degree greater than zero. Thus, the normalized leading

coefficients of PI(x) and PIR̃(x) are the same, so that e(I) = e(IR̃). However, IR̃ has grade at least one.

To see this, suppose grade(IR̃) = 0, Then there exists 0 ̸= r̃ ∈ R̃ such that r̃ · IR̃ = 0. Interpreting this in
R, we have rI ⊆ L. Thus, rI · Ic = 0. Therefore, r ∈ (0 : Ic+1) = (0 : Ic) = L, a contradiction. Therefore,

grade(IR̃) > 0. This shows that we can always pass to a ring in which the multiplicity of I stays the same
but the image of I has a superficial element that is a non-zerodivisor (when the residue field is infinite).

(iii) Assume I is generated by a system of parameters. Then e(I) ≤ λ(R/I). To see this, we may assume

k is infinite. Now induct on d. Suppose d = 1, so I = aR. Let L be as in (ii). Then e(aR) = e(aR̃). Now

in R̃, the image of a is a non-zerodivisor, so we we have that R̃/(ã) ∼= an−1R̃/anR̃, for all n. Applying this

to the filtration (0) ⊆ anR̃ ⊆ an−1R̃ ⊆ · · · ⊆ R̃, shows that λ(R̃/anR̃) = λ(R̃/aR̃) · n, for all n. Thus,

λ(R̃/aR̃) = e(aR̃) = e(aR). Since λ(R̃/aR̃) ≤ λ(R/aR), we have e(aR) ≤ λ(R/aR), which is what we want.

The inductive step is similar. Let L be as in (ii) and R̃ = R/L. Then e(I) = e(IR̃) and λ(R̃/IR̃) ≤ λ(R/I).

Thus, if we can prove the inequality we seek over R̃, it will hold in R. Note, that L is a nilpotent ideal,
so that dim(R̃) = dim(R), and hence IR̃ is generated by a system of parameters. Changing notation, we
now assume that grade(I) > 0. Now, by Proposition J5, we may assume that the first generator, say a,
of I is a superficial element and a non-zerodivisor. Setting R∗ := R/aR, by (ii), we have e(IR∗) = e(I).
IR∗ is generated by a system of parameters, so by induction e(IR∗) ≤ λ(R∗/IR∗). But R/I ∼= R∗/IR∗, so
λ(R/I) = λ(R∗/IR∗), which completes the proof.

Remark. (i) For R and I ⊆ R as above, suppose a ∈ I is any element such that dim(R/aR) = dim(R)− 1,
e.g., a is part of a system of parameters for R. Then the exact sequence

0 → (In+1 : a)/In → R/In
·a→ R/In+1 → R/(In+1, a) → 0,

gives λ(R/In+1) − λ(R/In) = λ(R/(In+1, a)) + λ((In+1 : a)/In), which shows that e(I/aR) ≥ e(I). This
clearly extends to R/J for any ideal J generated by part of a system of parameters, but does not extend to
an arbitrary ideal J .

(ii) Since our main goal is the Rees multiplicity theorem, we are interested in the relevant results con-
cerning the multiplicity of ideals in local rings. However, certain technical results needed along the way
are made easier by extending the notion of multiplicity to modules. To that end, let (R,m) be a lo-
cal ring of dimension d, I ⊆ R an m-primary ideal, and M a finitely generated R-module. Then the
module M :=

⊕
n≥0 I

nM/In+1M is a finitely generated G-module. Thus, by Theorem H5, the lengths

λR(I
n/In+1M) agree with a numerical polynomial of degree dim(M) − 1, for n >> 0. In particular, this
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polynomial has degree less than or equal to d− 1. It follows that the polynomial PI,M (x) that agrees with
λ(M/InM) for n >> 0 has degree less than or equal to d. This enables us to define a multiplicity function
e(I,−) as follows: e(I,M) = limn→∞

d!
nd · λ(M/InM). Of course, e(I,R) = e(I).

The next proposition plays a key role in the proof of the associativity formula for multiplicities. The
associativity formula often allows one to reduce a question about the multiplicity of an ideal in a local ring
to the same question when the ring is a domain. This will be especially important when we relate the
multiplicity of an ideal to the Rees valuation rings associated to the ideal.

Proposition K5. Let (R,m, k) be a local ring, I ⊆ R an m-primary ideal, and 0 → A → B → C → 0 be an
exact sequence of R-modules. Then e(I,B) = e(I, A) + e(I, C).

Proof. For all n ≥ 1, we have an exact sequence

0 → A/(InB ∩A) → B/InB → C/InC → 0,

and thus
λ(B/InB) = λ(A/(InB ∩A)) + λ(C/InC), (∗)

for all n. Now, by the Artin-Rees lemma there exists c > 0 such that InB ∩A ⊆ In−cA, for all n > c. Thus,

λ(A/In−cA) ≤ λ(A/InB ∩A)) ≤ λ(A/InA), (∗∗)
for all n > c. Applying limn→∞

d!
nd · λ(−) to (**) shows that limn→∞

d!
nd · λ(A/(InB ∩A)) exists and equals

e(I, A). Therefore, applying limn→∞
d!
nd · λ(−) to equation (*) gives what we want. □

Corollary L5. Let (R,m, k) be a local ring of dimension d, I ⊆ R an m-primary ideal and M a finitely
generated R-module. Then degree PI,M (x) = dim(M). Thus, e(I,M) = 0 if and only if dim(M) < d.

Proof. The second statement follows immediately from the first. For the first statement, we may mod out
the annihilator of M and assume that the annihilator of M is zero. This holds because neither the dimension
of M nor the lengths of M/InM change when viewing M as an R-module or a module over R modulo its
annihilator. We now have dim(M) = dim(R) and an inclusion R ↪→ M ⊕ · · · ⊕M , where this map is defined
as in the second comment above concerning extending residue fields. Set C := M ⊕ · · · ⊕M , so that C is a
finite R-module. It follows from the proposition above that e(I,R) ≤ e(I, C). Thus, the degree of PI,C(x)
is greater than or equal to the degree of PI(x), which is dim(R). On the other hand, we always have that
degree PI,C(x) ≤ dim(R), so equality holds. Since PI,C(x) and PI,M (x) have the same degree, the proof is
complete. □
Remark. For the proof of the associativity formula, we need the following standard fact. If M is a finite
module over the Noetherian ring R, then there exists a filtration (0) = M0 ⊆ M1 ⊆ · · · ⊆ Mr = M such
that each quotient Mi/Mi−1

∼= R/Pi, for some Pi ∈ Spec(R). To see this, let M ′ be maximal among all
submodules of M admitting a filtration of the required type. The set of such modules in non-empty, since
if P ∈ Ass(M), R/P is isomorphic to a submodule of M . If M ′ ̸= M , then we can extend the filtration one
step beyond M ′ by considering a submodule of M/M ′ corresponding to R/P , for P ∈ Ass(M/M ′).

Proposition M5. (Associativity formula) Let (R,m, k) be a local ring, I ⊆ R an m-primary ideal and M
a finitely generated R-module. Then

e(I,M) =
∑
P

e(I,R/P )λ(MP ),

where the sum is taken over all primes P ∈ Spec(R) such that dim(R/P ) = (.R). In particular,

e(I) =
∑
P

e((IR+ P )/P )λ(RP ).

Proof. Let (0) = M0 ⊆ M1 ⊆ Mr = M be a filtration of M with each Mi/Mi−1
∼= R/Qi, for each 1 ≤ i ≤ r,

and Qi ∈ Spec(R). Now, for each i, there is a short exact sequence

0 → Mi−1 → Mi → Mi/Mi−1 → 0,

from which it follows that e(I,Mi) = e(I,Mi−1) + e(I,Mi/Mi−1). Putting these equations all together
shows that e(I,M) =

∑
i e(I,R/Qi). By Corollary L5, e(I,R/Qi) ̸= 0 if and only if dim(R/Qi) = dim(R).
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Thus, the only terms in the sum e(I,M) =
∑

i e(I,R/Qi) that are non-zero, are the terms for which
dim(R/Qi) = dim(R). Suppose Qi satisfies dim(R/Qi) = dim(R). Qi may appear more than once. We
note that the number of times R/Qi appears in the filtration of M is λ(MQi

). Localize R and M at Qi.
Then MQi

is a finite length RQi
-module, and the original filtration localizes to a new filtration whose factors

are just k(Qi), and none of the original factors corresponding to R/Qi are lost. This new filtration is a
composition series for MQi

and the number of factors is λ(MQi
), which gives what we want. Finally, if

P ∈ Spec(R) satisfies dim(R/P ) = dim(R) and P does not appear in the filtration of M , then MP = 0. So
it can harmlessly be included in the sum e(I,M) =

∑
i e(I,R/Qi). This shows

e(I,M) =
∑
P

e(I,R/P )λ(MP ),

where the sum is taken over all primes P ∈ Spec(R) such that dim(R/P ) = dim(R). □
The following proposition is another type of associativity formula, and is quite useful in calculating

multiplicities. For this we need the following general observation.

Observation. Suppose R ⊆ S are integral domains with quotient fields K ⊆ L, respectively. Assume S is
finite over R, so that L is a finite extension of K. Then there exists a free R-module F ⊆ S and a non-zero
element r ∈ R such that rS ⊆ F . To see this, let U ⊆ R be the set of non-zero elements. Then SU is finite,
and hence integral, over RU = K. Thus, SU is a field. Since SU ⊆ LU = L, SU = L. Thus, every element in
the quotient field of S is a fraction of the form s

u , where s ∈ S and u ∈ R. Now suppose s1
u1
, . . . , st

ut
form a

basis for L over K. Then the R-module F := Rs1 + · · · + Rst is a free R-module of rank t contained in S.
On the other hand, if s ∈ S, we can write s = α1

s1
u1

+ · · ·+ αt
st
ut
, with each αi ∈ K. Clearly denominators

shows that there exists 0 ̸= r0 ∈ R such that r0s ∈ F . Since S is a finite R-module, there exists 0 ̸= r ∈ R
with rS ⊆ F .

Proposition N5. Let (R,m, k) be a local domain with quotient field K and S an integral domain that is
a finite R-module. Let L denote the quotient field of S, n1, . . . , nr denote the maximal ideals of S, and set
ki := S/ni. Then for any m-primary ideal I ⊆ R,

e(I) · [L : K] =

r∑
i=1

e(ISni
)[ki : k].

Proof. Let F ⊆ S be as in the observation above and take 0 ̸= r ∈ R such that rS ⊆ F . Then r annihilates
S/F , and thus dim(S/F ) < dim(R). Therefore, e(I, F/S) = 0. Additivity of the multiplicity symbol applied
to the exact sequence 0 → F → S → S/F → 0, gives e(I, S) = e(I, F ). Here we are thinking of S and F as
R-modules. Since F is free of rank [L : K] over R, we have e(IF ) = e(I)[L : K]. We must now show that
e(I, S) =

∑r
i=1 e(ISni

)[ki : k].

On the one hand, e(I, S) = limn→∞
nd

d! λR(S/I
nS). On the other hand, since λR(ki) = λk(ki) = [ki : k], if

H is an Sni
-module with finite length, additivity of the length function shows that λR(H) = [ki : k]λSni

(H).

Thus, λR(Sni
/InSni

) = [ki : k]λSni
(Sni

/ISni
). Since InS = (InSn1

∩ S) ∩ · · · ∩ (InSnr
∩ S), and the ideals

InSni ∩ S are co-maximal, we have an isomorphism of R-modules.

S/InS ∼= S/(InSn1
∩ S)⊕ · · · ⊕ S/(InSnr

∩ S),

for all n ≥ 1. Thus,

λR(S/I
nS) = λR(S/(I

nSn1
∩ S)) + · · ·+ λR(S/(I

nSnr
∩ S)).

However, ni is the only maximal ideal of S containing InSni ∩S, so that the ring S/(InSni ∩S) is local, i.e.,
S/(InSni

∩ S) = Sni
/InSni

, for all i. Therefore,

λR(S/I
nS) = λR(Sn1

/InSn1
) + · · ·+ λR(Snr

/InSnr
)).

From the first sentence of this paragraph we have

λR(S/I
nS) = [k1 : k]λSn1

(Sn1
/InSn1

) + · · ·+ [kr : k]λSnr
(Snr

/InSnr
).

multiplying this last equation by nd

d! and taking the limit as n → ∞ gives e(IS) =
∑r

i=1 e(ISni)[ki : k],
which is what we want. □
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The following theorem due to DK provides a natural way to connect the multiplicity of an I-primary ideal
to its Rees valuations rings. The result can be stated for rings that are not integral domains, but we will
only need it in the domain case.

Theorem O5. Let (R,m, k) be a local domain of dimension at least two, and I = (a1, . . . , ad)R an ideal
generated by a system of parameters. Set T := R[ a1

ad
, · · · , ad−1

ad
]
mR[

a1
ad

,··· ,
ad−1
ad

]
. Then e(I) = e(IT ).

Proof. Without loss of generality, we may assume that k is infinite. We induct on dim(R). Suppose
dim(R) = 2. It follows from Proposition J5, that there exists a′1 ∈ I such that a1 is a minimal generator
and a superficial element for I. Moreover, a′1 can be chosen to have the form a1 + ra2,for some r ∈ R. Note

that I = (a′1, a2) and R[
a′
1

a2
] = R[a1

a2
], so we may begin again assuming that a1 is a superficial element for I.

We consider the natural homomorphism φ from the polynomial ring R[x] → R[a1

a2
] taking x to a1

a2
. As

in the proof of Proposition D5, we let K be the kernel of this homomorphism, and L := g(x)R[x], where
g = a2x − a1. We still have that ac2 ·K ⊆ gR[x], for some c. Note that KS is the kernel of φS which map
obtained by inverting the elements S in R[x], not in mR[x]. We will write R(x) for R[x]S and note that φS

maps R(x) onto T .

We claim that g is superficial for IR[x] = (g, a2)R[x]. To see this, suppose c ≥ 1 satisfies (In : a1) = In−1,
for n ≥ c. (Note that x1 is a non-zerodivisor.) Suppose f · g ∈ InR[x], where f =

∑s
i=0 rix

i.

fg = −a1r0 + (a2r0 − a1r1)x+ · · ·+ (a2rs−1 − a1rs)x
s + a2r2x

s+1.

It follows that r0 ∈ (In : a1), so r0 ∈ In−1. Therefore, a2r0 ∈ In, which implies, r1 ∈ (In : a1). Thus,
r1 ∈ In−1. Inductively, we see that ri ∈ In−1 for all i, so f ∈ In−1R[x]. Therefore, g superficial for
IR(x). Thus e(I) = e(IR(x)) = e(IR(x)/gR(x)). Set A := R(x)/gR(x)), so e(I) = e(IA). Over A we
have an exact sequence of A-modules 0 → KA → A → T → 0. Note that a power of a2 annihliates
KA, and since a2 is part of a system of parameters for A (in this case, an entire system of parameters),
this means dim(KA) < dim(A). Therefore, e(IA,KA) = 0. By the additivity of the multiplicity symbol,
e(IA,A) = e(I, T ), which gives what we want.

Now suppose the result holds for local domains of dimension d − 1. As before, we may assume a1 is
superficial for I. Set T1 := R[ a1

ad
]mR[

a1
ad

]. Exactly the same proof as above shows that e(I) = e(IT1).

The ring T1 is a (d − 1)-dimensional local ring with system of parameters a2, . . . , ad. Thus, by induction
e(IT1) = e(IT ∗), where T ∗ = T1[

a2

ad
, . . . , ad−1

ad
]. However, it is readily seen (as in the proof of Proposition

E5) that

T ∗ = R[
a1
ad

, · · · , ad−1

ad
]
mR[

a1
ad

,··· ,
ad−1
ad

]
= T,

which completes the proof. □
The next two theorems are due to D. Rees. The proofs are due to DK. The proofs use the following

standard fact, namely, that if I is an m-primary ideal in a local ring with infinite residue field, there exists
an ideal J ⊆ R, generated by a system of parameters, such that e(J) = e(I). This is essentially equivalent
to the conclusion of Proposition F5, and is the form of Proposition F5 first given by Northcott and Rees.
To see this, note that the proof of Proposition F5 shows that there exists an ideal J ⊆ I generated by a
system of parameters such that JIn = In+1 for all n large, say n ≥ n0. Therefore, Jn−n0In0 = In, for all
n > n0. It follows that for all n > n0, I

n ⊆ Jn−n0 ⊆ In−n0 . Thus, for n >> 0, PI(n−n0) ≤ PJ(n) ≤ PI(n),
which shows e(J) = e(J).

In a similar vein, suppose J is an m-primary ideal and a ∈ R is integral over J . Then there exists an equation
an+j1a

n−1+· · ·+jn = 0, with each js ∈ Js. This implies an ∈ J(x, J)n−1, which gives (a, J)n = J(a, J)n−1.
Thus, the same argument as above shows e(a, J) = e(J). Since J is finitely generated, this shows e(J) = e(J).
Therefore, if I = J , for m-primary ideals I, J ⊆ R, then e(I) = e(J).

Remark. Suppose V is a DVR with uniformizing parameter π and quotient field k. Then any non-zero
element a ∈ K can be written uniquely as uπn, for some n ∈ Z. This enables one to define a function
v : K → Z ∪ ∞ by v(a) = n, if a ∈ K is non-zero and a = uπn, and v(0) = ∞. The function v is called
the valuation associated to V. If J ⊆ V is an ideal, we write v(J) for v(a), where J = aV . This is the
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minimum value v(j), with j ∈ J . Note that if v(J) = e, then λV (V/J
n) = en for all n, so that e(J) = e, i.e.,

e(J) = v(J), for all ideals J ⊆ V .

Theorem Q5. Let (R,m, k) be an analytically unramified local domain with infinite residue field and I ⊆ R
an m-primary ideal. Then there exist finitely many DVRs V1, . . . , Vr between R and its quotient field, and
finitely may positive integers d1, . . . , dr such that e(I) =

∑r
i=1 divi(I), where vi is the valuation associated

to Vi.

Proof. If we take J ⊆ R such that J is generated by a system of parameters with e(J) = e(I), we may
replace J by I and begin again, assuming that I = (a1, . . . , ad)R is generated by a system of parameters.
Taking T as in Theorem O5, we have e(I) = e(IT ). Now, by Rees’s theorem on analytically unramified
local domains, T ′ is a finite T -module. Since T and T ′ have the same quotient field, applying Proposition
N5 gives e(IT ) =

∑r
i=1 die(IVi), where di = [Vi/mVi : k]. By the preceding remark, e(IVi) = vi(I), which

completes the proof. □
Remark. (i) Theorem Q5 was proven by Rees in a much more general form, essentially for any m-primary
ideal in any local ring. However, one can achieve the general result by first extending the residue field, then
passing to the completion of R, and modding out each minimal prime. The resulting rings are analytically
unramified and quasi-unmixed. Rees’ proof did not use the ring T , but rather used his earlier work on
valuations associated to ideals (via the extended Rees ring).

(ii) The proof of Theorem Q5 shows that e(I) is determined by the DVRs lying above the ring T , while
Proposition E shows that R must satisfy the dimension formulas (equivalently, be quasi-unmixed) in order
for the DVRs above T to determine the integral closure of I. This is one way to explain the need for the
quasi-unmixed hypothesis in the multiplicity theorem of Rees.

We are now ready for the main theorem of this section.

Theorem R5. (Rees Multiplicity Theorem) Let (R,m, k) be a quasi-unmixed local ring, and J ⊆ I m-primary
ideal. If e(J) = e(J), then J = I.

Proof. We make a series of reductions. First, we may assume that k is infinite. This follows, since using
R(x) as before, e(I) = e(IR(x)) and IR(X) = IR(x), and hence IR(x) ∩R = I, and similarly for J .

Since I and J arem-primary ideals, λ(R/In) = λ(R̂/InR̂) for all n, and similarly for J . Thus, e(IR̂) = e(JR̂).

If IR̂ = JR̂, then I = J , by the first part of the proof of Theorem M3. Thus we may may replace R̂ by R
and assume that R is a complete, equidimensional local ring with infinite residue field.

Now, by the associativity formula,

e(I) =
∑
P

e(I,R/P )λ(RP ) and e(J) =
∑
P

e(J,R/P )λ(RP ),

where the sums are taken over all primes P ∈ Spec(R) such that dim(R/P ) = dim(R). Since R is equidimen-
sional, this set of primes is excatly the set of minimal primes of R. Now, since J ⊆ I, e(J,R/P ) ≥ e(I,R/P )
for each term in the sums above. Since the two sums are equal, we must have e(J,R/P ) = e(I,R/P ), for all
minimal primes P ⊆ R. If the conclusion we seek holds over each R/P , then J = I, by Lemma B3. Thus, it
is enough to prove the theorem under the further assumption that R is a complete local domain with infinite
residue field.

Now, by Proposition F5 and the Remark preceding Theorem Q5, we may assume J = (a1, . . . , ad) is generated
by a system of parameters. Set T := R[ a1

ad
, · · · , ad−1

ad
]
mR[

a1
ad

,··· ,
ad−1
ad

]
. By Theorem O5,

e(I) = e(J) = e(JT ) ≥ e(IT ).

We claim that e(IT ) ≥ e(I). To see this, consider the ring S := R(x1, . . . , xd−1), the localization of
R[x1, . . . , xd−1] at mR[x1, . . . , xd−1]. Note that there is a natural ring homomorphism α from S onto T ,
which is just the localization of the homomorphism from Proposition D5. Like in the proof of Proposition
D5, we set L = (adx1 − a1, . . . , adxd−1 − ad−1)S, (though now S is the polynomial ring localized) and set K
to be the kernel of α. Let A := S/LS. We now argue as in the proof of Theorem O5. Since L is generated
by part of a system of parameters for S, e(I) = e(IS) ≤ e(IS/LS) = e(IA). On the other hand some power
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of ad multiplies K into L, so that the image of this element in A annihilates KA. Thus e(IA,KA) = 0.
Additivity of the multiplicity symbol shows that e(IA,A) = e(IA,A/K) = e(IT ). Thus, e(I) ≤ e(IT ),
which, now gives e(JT ) = e(IT ).

Now we use the fact that R is a complete local domain, and therefore is analytically unramified and
satisfies the dimension formula. Note that JT = adT . By the proof of Theorem Q5, if we write Q1, . . . , Qr

for the maximal ideals of T ′ and set Vi := T ′
Qi
, we have

e(JT ) =

r∑
i=1

divi(J),

where the vi are the valuations associated to Vi, and di := [Vi/mVi
: k]. Moreover, by Proposition N5,

e(IT ) =

r∑
i=1

divi(I).

Since J is contained in I, vi(I) ≤ vi(J), for all i, so by equality of the sums above, we have vi(I) = vi(J),
for all i. Thus, JVi = IVi, for all I. Therefore, I ⊆ (JV1 ∩R)∩ · · · ∩J(Vr ∩R) = J , by Proposition E5, since
R satisfies the dimension formula. Thus, I ⊆ J , and since the reverse containment always holds, I = J , and
the proof is complete. □

6. Mixed multiplicities and Teissier’s Theorem

The purpose of this section is to consider the following theorem of Teissier, which was given in a geometric
setting.

Theorem A6. Let (R,m, k) be a reduced local ring of dimension d ≥ 2 such k has characteristic zero, R is
Cohen-Macaulay and also the localization of a finitely generated k-algebra at a maximal ideal. Let I, J ⊆ R
be two m-primary ideals. Then:

e(IJ)
1
d ≤ e(I)

1
d + e(J)

1
d .

This is similar in spirit to the Minkowski inequality from analysis which states that for f, g ∈ Lp(R) (say),
||f + g||p ≤ ||f ||p + ||g||p, where ||f ||P = (

∫
|f |pdx)

1
p . A few years after Teissier’s result was published, Rees

and Sharp wrote a paper extending the result tow arbitrary local rings. We will present this result below. A
key feature of Teissier’s proof was the use of the so-called mixed multiplicities of I and J . These multiplicities
are the normalized leading coefficients of the terms of total degree d in the Hilbert-Samuel polynomial that
tracks the lengths of R/InJm, for n,m >> 0.

General Discussion. We begin with a general discussion of some of the things we will need for the
Teissier-Rees-Sharp theorem.

(i) Just as in the one variable case, a numerical polynomial in two variables in a polynomial P (x, y) ∈ Q[x, y]
such that P (n,m) ∈ Z, for all n,m ∈ Z (or N). Given m-primary ideals I, J ⊆ R, there exists a numerical
polynomial of degree d PI,J(x, y) ∈ Q[x, y] such that PI,J(n,m) = λ(R/InJm), for n,m >> 0. We will
prove this below, but the proof of this fact is not much different from the proof of the one variable case,
though below we will not discuss the general bi-graded case. Henceforth, we will think of this polynomial as
a polynomial in n and m.

(ii) Because PI,J(n,m) is a numerical polynomial, there exist integer coefficients, eij such that

PI,J(n,m) =
∑

i+j≤d

ei,j

(
n+ i

i

)(
m+ j

j

)
.

The proof of this is almost exactly the same as in the one variable case because one can induct on the degree
of the second variable, and mimic the previous proof. The integers eij such that i + j = d are called the
mixed multiplicities of I and J . We will see below that the mixed multiplicities are positive integers.

Moreover, using the binomial identities
(
n+i
i

)
−
(
n+i−1

i

)
=

(
n+i−1
i−1

)
, exactly the same proof from the previous

section shows that if H(n,m) is a numerical function, and H(n,m) −H(n − 1,m) agrees with a numerical
polynomial of degree d− 1 for n,m >> 0, then H(n,m) agrees with a numerical polynomial of degree d, for
n,m >> 0.

44



(iii) It is easy to see that if we write out the terms of total degree d in PI,J(n,m), this expression can be
written as

PI,J(n,m) =
1

d!
{e0(I|J)nd +

(
d

1

)
e1(I|J)nd−1m+ · · ·+

(
d

d− 1

)
ed−1(I|J)nmd−1 + ed(I|J)md}.

Where ei(I|J) = ed−i,i, for 0 ≤ i ≤ d.

(iv) Now suppose we fix r, s ≥ 1. Then e(IrJs) is determined by the lengths λ(R/(IrnJsn) for n >> 0,
which equal PI,J(rn, sn). If we substitute (rn, sn) into the equation in (iii) we get that the degree d term of
PIrJs(n) is

1

d!
{e0(I|J)rr +

(
d

1

)
e1(I|J)rd−1s+ · · ·+

(
d

d− 1

)
ed−1(I|J)rsd−1 + ed(I|J)sd}nd.

This shows that

e(IrJs) = e0(I|J)rd +
(
d

1

)
e1(I|J)rd−1s+ · · ·+

(
d

d− 1

)
ed−1(I|J)rsd−1 + ed(I|J)sd.

Moreover, we also infer ei(I
r|Js) = rd−isiei(I|J), for all i. If we take r = s = 1 in the equation above, we

have

e(IJ) = e0(I|J) +
(
d

1

)
e1(I|J) + · · ·+

(
d

d− 1

)
ed−1(I|J) + ed(I|J). (?)

(v) Let’s see how the formula (?) might lead to the Minkowski-type inequality for multiplicities discovered

by Teissier. Consider three positive integers a, b, c. If a
1
d ≤ b

1
d + c

1
d , then raising this relation to the dth

power, we get a ≤
∑d

i=0

(
d
i

)
b

d−i
d c

i
d . It is clear that this last expression is equivalent to a

1
d ≤ b

1
d + c

1
d . If

we take a = e(IJ), b = e0(I|J) and c = ed(I|J), then using (?), the Minkowski inequality for multiplicities

holds if each ei(I|J) ≤ e0(I|J)
d−i
d · ed(I|J)

i
d , for 1 ≤ i ≤ d− 1.

(vi) Set ei := ei(I|J), for 0 ≤ i ≤ d. Thus, Teissier’s inequality holds if each edi ≤ ed−i
0 eid. We claim these

inequalities hold if e1
e0

≤ e2
e1

≤ · · · ≤ ed
ed−1

. To see this, we first note that the required inequalities hold if and

only if ( eie0 )
d ≤ ( ede0 )

i, for all 1 ≤ i ≤ d− 1. We next note that

(
ei

ei−1
)d−i(

ei−1

ei−2
)d−i · · · (e1

e0
)d−i ≤ (

ed
ed−1

)i · (ed−1

ed−2
)i · · · (ei+1

ei
)i,

since there are (d − i)i factors on both sides of the inequality, and every factor on the left hand side is
less than or equal to every factor on the right hand side. Multiply both sides of this last inequality by
( ei
ei−1

)i( ei−1

ei−2
)i · · · ( e1e0 )

i to get

(
ei

ei−1
)d(

ei−1

ei−2
)d · · · (e1

e0
)d ≤ (

ed
ed−1

)i · (ed−1

ed−2
)i · · · (e1

e0
)i.

Cancelling like numerators and denominators on both sides of the inequality gives ( eie0 )
d ≤ ( ede0 )

i, which is
what we want.

(vii) Thus, Tessier’s theorem holds if one can show e1
e0

≤ e2
e1

≤ · · · ≤ ed
ed−1

. However, these inequalities hold

if e2i ≤ ei−1ei+1, for all 1 ≤ i ≤ d− 1.

(viii) Suppose P (n,m) is a numerical polynomial in two variables of degree d and we write it in the form

P (n,m) =
∑

i+j≤d

(
n+i
i

)(
m+j
j

)
, then using the binomial identity

(
n+i
i

)
−
(
n−1+i

i

)
=

(
n−1+i
i−1

)
, we have that

P (n,m) = P (n− 1,m) =
∑

i+j≤d−1

ei,j

(
n+ i− 1

i− 1

)(
m+ j

j

)
.

Now suppose R∗ is a local ring of dimension d− 1 having the property that

PI,J(n,m)− PI,J(n− 1,m) = PIR∗,JR∗(n,m).

Ii follows that ei(I
∗|J∗) = ei(I|J), for 0 ≤ i ≤ d− 1. Similarly, if R′ is a local ring of dimension d− 1 having

the property that
PI,J(n,m)− PI,J(n,m− 1) = PIR′,JR′(n,m),
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it follows that ei(I
′|J ′) = ei(I|J), for 1 ≤ i ≤ d. Thus, if one can find rings R∗ and R′ satisfying these

properties, once can prove the inequalities in (vii) by induction on the dimension.

(ix) An element a ∈ I is said to be superficial for I, J if there exists c ≥ 1 such that

(InJm : a) ∩ IcJm = (In−1Jm : a),

for all n > c and m ≥ 1. We will see below that superficial elements exists, and that for R∗ := R/aR,

PI,J(n,m)− PI,J(n,m− 1) = PI∗,JR∗(n,m).

This reduces the proof of Minkowski inequality to the two-dimensional case.

(x) Let L denote the stable value of (0 : m) ⊆ (0 : m2) ⊆ · · · . Then, we have seen that the image of m in
S := R/L has positive grade. Since I, J are m-primary, it follows that IS and JS also have positive grade.
Now, exactly the same proof as in item (ii) of the Applications of Superficial Elements from the previous
section shows that PI,J(n,m) and PIS,JS(n,m) differ by a constant. Since dim(R) = dim(S) > 0, this shows
that ei(I|J) = ei(IS, JS), for all i. Thus, we are free to assume I and J have positive grade when working
with mixed multiplicities.

(xi) The discussion in the previous section concerning extending the residue field, in case k is finite, applies
equally well in the current situations, so that the mixed multiplicities remain the same when we extend I
and J to R(x). Thus, one may harmlessly assume that k is infinite.

(xii) Let K ⊆ I be a reduction of I, i.e., there exists n0 such that KIn0 = In0+1. It follows that for all
n ≥ n0, K

n−n0In0 = In. Since InJm ⊆ Kn−n0Jm ⊆ In−n0Jm, for n ≥ n0, it follows that

PI,J(n,m) ≤ PK,J(n− n0,m) ≤ PI,J(n− n0,m),

for n ≥ n0, and from this it follows that ei(I|J) = ei(K|J), for all i (since the mixed multiplicities are
positive). The proof of Theorem F5 shows that when k is infinite, there exists an ideal K ⊆ I, generated
by a system of parameters such that K is a reduction of I. Thus, when k is infinite, we may replace I by a
system of parameters and not change the mixed multiplicities.

(xiii) e0(I|J) = e(I) and ed(I|J) = e(J). To see this, take n,m sufficiently large, so that the lengths
λ(R/InJm) = PI,J(n,m). Now, fix m = m0. Then

λ(R/InJm0) =
1

d!
{e0(I|J)nd +

(
d

1

)
e1(I|J)nd−1m0 + · · ·+

(
d

d− 1

)
ed−1(I|J)nmd−1

0 + ed(I|J)md
0}+ · · ·

This shows that the lengths λ(R/InJm0) are given by a polynomial of degree d whose normalized leading
coefficient is e0(I|J). On the other hand, λ(R/InJm0) = λ(R/Jm0) + λ(Jm0/InJm0), for all n. Therefore,
the degree d polynomial giving the lengths of Jm0/InJm0 , for n large, also has e0(I|J) as its normalized
leading coefficient. In other words, e0(I|J) = e(I, Jm0), when we regard Jm0 as an R-module. Since the
annihilator of Jm0 has to be nilpotent, dim(Jm0) = d, as an R-module. Since dim(R/Jm0) = 0, additivity
of the multiplicity symbol e(I,−) applied to the exact sequence

0 → Jm0 → R → R/Jm0 → 0,

shows that e(I, Jm0) = e(I,R) = e(I). Thus, e0(I|J) = e(I), as required. The proof that ed(I|J) = e(J) is
similar.

Our first goal is to show the existence of PI,J(n,m) while at the same time showing that for all 0 ≤ i ≤ d,
ei(I|J) > 0. For this, we need superficial elements relative to a pair of ideals. The proof of this case is
very similar to the proof of the superficial element proposition from the previous section, though there is an
interesting wrinkle in the proof that does not occur with one ideal. We also need a bigraded version of the
Artin-Rees Lemma. We just indicate the proof in the case we need because it is essentially the same as in
the usual case.

Proposition B6. Suppose I, J,K ⊆ R are ideals. Then there exists u, v ≥ 1 such that for all n ≥ u and
m ≥ v, InJm ∩K ⊆ In−uJm−vK.

Sketch of Proof. One uses the bigraded Rees algebra R := R[It, Js] =
⊕

n,m≥0 I
nJmtnsm and considers the

ideal K =
⊕

(K ∩ InJm)tnsm ⊆ R. This is a homogenous ideal with respect to the bigrading on R, so it
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has a set of homogeneous generators. Take u greater than any exponent of t among these generators and v
greater than the exponent of s among these generators. Then for any element b ∈ InJm ∩ K with n ≥ u
and m ≥ v, btnsm ∈ K. Write this element in terms of the generators of K, and read off the homogeneous
coefficients of the generators, to get the desired conclusion. □
Proposition C6. Let (R,m, k) be a local ring with infinite residue field and positive depth. Let I, J ⊆ R be
m-primary ideals. Then there exist c > 0 and a non-zerodivisor a ∈ I, that is also a minimal generator of I,
such that (InJm : a) = In−1Jm, for all n > c and all m ≥ 1.

Proof. We use the Rees ring R of R with respect to I and J . This is the ring R := R[It, Js], where
t, s are indeterminates over R. This is a bi-graded R-algebra, generated in degrees (1,0) and (0,1) over
R. Let Q1, . . . , Qr be the associated primes of IR not containing It and Qr+1, . . . , Qh be the remaining
associated primes of IR. Choose c0 > 0 such that (It)c0 is contained in the Qi-primary component of IR,
for r + 1 ≤ i ≤ h. We set Ji := {r ∈ R |rt ∈ Qi}, for r + 1 ≤ i ≤ h. Then as before, I ̸⊆ Ji, so that
I ∩ Ji is properly contained in I. Let P1, . . . , Pb be the associated primes of R, and note that Wi := I ∩ Pi

is properly contained in I. Finally, take J ⊆ I so that (J +mI)/mI ⊆ I/mI has dimension one less that the
dimension of the vector space I/mI. Then the subspaces (Ji +mI)/mI, (Wi +mI)/mI, (J +mI)/mI are all
proper subspaces of I/mI, so there exists a ∈ I whose image in I/mI avoids these subspaces. Thus a is a
minimal geberator of I and also a non-zerodivisor.

Now suppose n > c0 and r ∈ (InJm : a) ∩ Ic0Jm. Then rtc0sm ∈ R. If n = c0 + 1, then c0 = n − 1,
so r ∈ In−1Jm, which is what we want. Suppose n > c0 + 1. Then rtc0sm · at ∈ InJmtc0+1sm ∈ IR.
By definition of c0, rt

c0Jm belongs to every Qi-primary component of IR, with r + 1 ≤ i ≤ h. On the
other hand, the choice of a forces rtc0sm to be in the Qj-primary components of IR, for 1 ≤ i ≤ r. Thus,
rtc0sm ∈ IR. This implies r ∈ Ic0+1Jm. We may repeat the argument until we arrive at r ∈ In−1Jm.

Finally, let u, v be chosen so that (a)∩InJm ⊆ aIn−uJm−v, for n ≥ u andm ≥ v. Take p such that Ip ⊆ J ,
so that Ipv ⊆ Jv. Now suppose n > pv + u + c0 and take r ∈ (InJm : a). Then ra ∈ InJm ⊆ Iu+c0Jm+v

(the aforementioned wrinkle), so ra ∈ (a) ∩ Iu+c0Jm+v and we can write ra = ax, for x ∈ Ic0Jm. Thus,
r = x ∈ Ic0Jm, since a is a non-zerodivisor. Therefore, r ∈ (InJm : a) ∩ Ic0Jm = In−1Jm, by the previous
paragraph. Taking c := pv + u+ c0 shows that (InJm : a) = In−1Jm, for all n > c, and all m ≥ 1. □

We now show the existence of the Hilbert-Samuel polynomial associated to two m-primary ideals.

Theorem D6. Let (R,m, k) be a local ring of dimension d, and I, J ⊆ R m-primary ideals. Then there
exists a numerical polynomial PI,J(n,m) of degree d such that λ(R/InJm) = PI,J(n,m), for n,m >> 0.
Moreover, if we write the terms of total degree d in PI,J(n,m) as

1

d!
{e0(I|J)nd +

(
d

1

)
e1(I|J)nd−1m+ · · ·+

(
d

d− 1

)
ed−1(I|J)nmd−1 + ed(I|J)md},

then each ei(I|J) > 0.

Proof. We use HI,J(n,m) to denote λ(R/InJm) for all n,m. Without loss of generality, we may assume
the residue field of R is infinite. We now induct on d. If dim(R) = 0, then the conclusion of the theorem is
clear. Assume d > 0. By (x) in the General Discussion above, and its predecessor in the previous section, if
we write S := L, for L := (0 : mt), for t >> 0, the lengths HI,J(n,m) and the lengths λ(S/InJmS) differ
by a constant for large n,m. It follows that we may assume that R has positive depth, and hence I and J
have positive grade. By the previous proposition, there exists c > 0 and a ∈ I, a non-zero divisor, such that
(InJm : a) = In−1Jm, for all n > c and m ≥ 1. Set R∗ := R/aR. For n > c, the exact sequence

0 → R/In−1Jm ·a→ R/InJm → R∗/InJmR∗ → 0,

gives

HI,J(n,m)−HI,J(n− 1,m) = λ(R∗/InJmR∗).

Since dim(R∗) = d − 1, by induction on d, the lengths of R∗/InJmR∗ agree with a polynomial of degree
d−1, all of whose top coefficients are positive. By comment (ii) in the General Discussion above, HI,J(n,m)
agrees with a polynomial numerical polynomial PI,J(n,m) of degree d, for n,m >> 0. If we write the
terms of degree d in PI,J(n,m) as in the statement of the theorem, item (viii) in the discussion above shows
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ei(I|J) = ei(IR
∗|JR∗) > 0, for 0 ≤ i ≤ d − 1. Since ed(I|J) = e(J) > 0 (by part (xiii)), the proof is

complete. □
We need two preliminary results before proving the Teissier-Rees-Sharp theorem. The first is a very special

case of a general result known as Lech’s Lemma and the second result is the key step in the Rees-Sharp proof.

Proposition D6. Let (R,m, k) be a two-dimensional local ring with infinite residue and I = (a, b)R an ideal
generated by a system of parameters. Assume that a ∈ I is a non-zerodivisor and a superficial element for
I. Then,

e(I) = lim
n→∞

1

n2
· λ(R/(an, bn)R).

Proof. Let’s first note that e(In) = e((an, bn)R), for all n. To see this, let ajbj ∈ In be a monomial generator
of degree n. Then (aibj)n = (an)i(bn)j ∈ (an, bn)nR. This shows aibj is integral over (an, bn), and thus In

and (an, bn)R have the same integral closure, and thus, the same multiplicity. Therefore,

n2e(I) = e(In) = e((an, bn)R) ≤ λ(R/(an, bn)R) ≤ n · λ(R/(a, bn)R).

Here we are using the fact that if I ⊆ R is an m-primary ideal in a local ring of dimension d, then for any
r ≥ 1, e(Ir) = rde(I).6 Dividing the displayed equation by n2 and taking the limit as n → 0 we have,

e(I) ≤ lim
n→∞

1

n2
· λ(R/(an, bn)R) ≤ lim

n→∞

1

n
· λ(R/(a, bn)R) = e(b,R/aR) = e(I/aR) = e(I),

since a ∈ I is a superficial, non-zerodivisor.

Theorem E6. Let (R,m, k) be a two-dimensional local ring and I, J ⊆ R m-primary ideals. Then,

e(IJ) ≤ 2e(I) + 2e(J).

Proof. We may assume that the residue field of R is infinite. We may also by modding out the stable value
of (0 : mt), we may assume I, J have positive grade. By Theorem F5, there exists an ideal K ⊆ I generated
by a system of parameters with K = I. By the comments following Theorem O5, e(K) = e(I). On the other
hand, one also has KJ = IJ , and thus, e(KJ) = e(IJ). Therefore, we may replace I by K, then change
notation to assume that I = (a, b)R is generated by a system of parameters. From our work in the previous
section, we may further assume that I = (a, b) with a a non-zerodivisor and a superficial element for I.

Let F = R2, and observe that for all n ≥ 1, we have a surjectiveR-module map F/JnF → (an, bn)R/(an, bn)Jn.
Thus,

2 · λ(R/Jn) ≥ λ{(an, bn)R/(an, bn)Jn}.
Therefore,

λ(R/(an, bn)) + 2λ(R/Jn) ≥ λ(R/(an, bn)) + λ{(an, bn)R/(an, bn)Jn} = λ(R/(an, bn)Jn) ≥ λR/(InJn).

If we multiply the left hand side of this inequality by 2
n2 and take the limit as n → ∞, we get 2e(I) + 2e(J)

(using Lech’s lemma on the first term). Multiplying the far right side of the inequality by 2
n2 and taking the

limit as n → ∞ gives, e(IJ), which completes the proof. □
We now have all of the pieces required to prove the main result of this section.

Proof of Theorem A6. We may assume the residue field of k is infinite, and proceed by induction on
d := dim(R). We let ei(I|J) denote the mixed multiplicities of I and J , and set ei := ei(I|J). By item (iv)
of the General Discussion, we need to prove that e2i ≤ ei−1ei+1, for all 1 ≤ i ≤ d − 1. Suppose d = 2. By
item (vii) of the General Discussion above, we must prove e21 ≤ e0e2. By item (iv) in the general discussion,
for all r, s ≥ 1, we have

e(IrJs) = e0r
2 + 2e1rs+ e2s

2.

On the other hand, by Theorem E6,

e(IrJs) ≤ 2e(Ir) + 2e(Js) = 2r2e(I) + 2s2e(J).

Thus,
e0r

2 + 2e1rs+ e2s
2 ≤ 2e0r

2 + 2e2s
2,

6To see this, note that λ(R/(Ir)n) = PI(rn), for n >> 0, which shows that the normalized leading coefficient of PIr (n) is

rde(I).
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for all r, s ≥ 1. Therefore,
0 ≤ e0r

2 − 2e1rs+ e2s
2,

for all r, s. If we substitute r = e1 and s = e0 into this last expression, we get

0 ≤ e0e
2
1 − 2e21e0 + e2e

2
0 = −e0e

2
1 + e20e2.

Since e0 > 0, , we can divide by e0 and conclude e21 ≤ e0e2.

Now suppose d ≥ 3. By item (x) in the General Discussion, we may assume that I, J have positive grade.
By Proposition C6, there exists a ∈ I, a non-zerodivisor that is superficial for the pair I, J . Set R∗ := R/aR,
so dim(R∗) = d− 1. Then for n >> 0, we have an exact sequence

R/In−1Jm ·a→ R/InJm → R∗/InJmR∗ → 0.

It follows that for n,m >> 0, PI,J(n,m) − PI,J(n − 1,m) = PIR∗,JR∗(n,m). By item (viii) in the General
Discussion, ei(I|J) = ei(IR

∗, JR∗), for 0 ≤ i ≤ d−1. Therefore, by induction, we have e2i ≤ ei−1ei+1, for all
1 ≤ i ≤ d−2. Since the argument is symmetric in I and J , we may take b ∈ J superficial for I, J and repeat
what we have just done with the roles of I and J reversed to pick up the last relation e2d−1 ≤ ed−2ed. □
Final Remarks. What about equality in the Minkowski inequality for multiplicities? It turns out that this
is closely related to the integral closure of powers of ideals. Two ideals I, J ⊆ R are said to be projectively

equivalent if there exist positive integers a, b ≥ 1 such that Ia = Jb. We first note that if this condition
holds, then equality in the Minkowski inequality for multiplicities is more or less a formal consequence of
the rules for manipulating the mixed multiplicities. To see this, we need to observe that if L,K ⊆ R have
the same integral closure, then ei(L|K) = e(L) = e(K), for all i. To see this, for one, we know from the
previous section that e(L) = e(K). We may also assume L = K, by item (xii) in the General Discussion.
So suppose L = K. Then when we calculate PL,K(n,m) = PL,L(n,m) we are calculating the lengths of
R/LnKm, with n,m independent. But this is the same as considering the lengths of R/Ln+m as a function
of two variables. Thus, if expand PL(n + m) out as function of n,m and compare the leading coefficients
with those of PL,L(n,m), we see that ei(L,L) = e(L), for all i.

Now, if we trace through the sequence of steps that led from the Minkowski inequality to the set of
inequalities e2i ≤ ei−1ei+1, we see two things: (i) The Minkowski inequality holds if and only if the set of
inequalities e2i ≤ ei−1ei+1 hold and (ii) Equality in the Minkowski inequality holds if and only if e2i = ei−1ei+1,

for all i. Now, suppose I, J ⊆ R are projectively equivalent, i.e., there exist a, b ≥ 1 such that Ia = Jb.

Then, all of the mixed multiplicities ei(Ia|Jb) are equal, and consequently, all of the mixed multiplicities
e(Ia|Jb) are equal. Thus ei(I

a|Jb)2 = ei−1(I
a|Jb)ei+1(I

a|Jb), for all i. However, from item (iv) in the
General Discussion we have,

ei(I
a|Jb)2 = (ad−ibi)2ei(I|J)2 and ei−1(I

a|Jb)ei+1(I
a|Jb) = (dd−i+1bi−1ei−1(I|J)) · (ad−(i+1)bi+1ei+1(I|J)),

from which it follows that ei(I|J)2 = ei−1(I|J)ei+1(I|J), for all i, and thus, equality holds in the Minkowski
inequality.

In the geometric setting, Teissier proved the converse, which turns out to be a generalization of the Rees
multiplicity theorem. In other works, the converse states that equality in the Minkowski inequality implies
that the ideals are projectively equivalent. Using geometric techniques, Teissier reduced the question to
surfaces, and used resolutions of singularities to finish off the proof. Rees and Sharp proved an algebraic
version of this for two-dimensional quasi-unmixed local rings and DK showed how to reduced the general
algebraic case to the two-dimensional case. A consequence of this theorem is that one gets a version of the
Rees multiplicity theorem, without assuming a containment relation between I and J . The statement in this
case would be: Let (R,m, k) be a quasi-unmixed local ring of dimension d and I, J ⊆ R, m-primary ideals. If
e0(I|J) = e1(I|J) = · · · = ed(I|J), then I = J . The point is that if all of the mixed multiplicities are equal,

it is not hard to see that equality must hold in the Minkowski inequality. Thus, Ia = Jb, for some a, b. But
then ade(I) = bde(J), and since e(I) = e(J), a = b, so I = J .
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